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Abstract. It is shown that a very small change in the initial angle of orientation of a tumbling cube can be detected 
by a shift in the endpoint of the trajectory after the cube travels a minimum distance. Specifically, if a cube travels 
forward in the x direction, with s the number of forward steps (tumbles) in the trajectory, the average sideways 
deviation Y∆  in final position produced by a change in initial angle 0δθ  is given by Y∆ = a(s – s0), where a is the 

average length of the sideways step during each tumble and s0 a term which depends logarithmically on 0δθ . It is 
proposed that the reason cubes (dice) are popular in games of chance is because this ability of the cube trajectory to 
magnify small changes allows the possibility for mental influence to act. A general outline is given for experiments 
using traveling cubes which can test for the action of mental influence. 
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1.0 Introduction 

Tumbling cubes (i.e., dice) are often used in games of chance, and it has been widely held over many centuries that a 
person can be "lucky" and influence the final position of the cubes. It was first shown by Evan Harris Walker 
(1975), in a rough analysis of the dynamics, that the trajectory of a traveling cube is extremely sensitive to any small 
influence which changes its angular orientation at the beginning of the trajectory. Therefore, as Walker proposed, if 
mental influence can produce a small effect at the beginning of the trajectory, it can change the cube's endpoint. 

As noted above, Walker's analysis was very rough, and the purpose of this paper is to redo the dynamical 
analysis of the traveling cube, using a different and more detailed method. (For a comparison of Walker's analysis 
with this one, see Burns (2002b).)  This more detailed analysis can provide a framework in which experiments can be 
designed to test the possibility that a traveling cube can be affected by mental intention. (No specific experimental 
designs are suggested here, but a general outline is given.) 

It should be pointed out that Walker's original analysis was made in the context of a larger theory which 
proposed that mental influence acts within the limits of the uncertainty principle. The latter topic will be addressed 
in another paper (Burns, 2002b). For the sake of generality, no assumptions are made herein as to the magnitude of 
effects produced by mental influence -- it is only assumed that they are small. 

With respect to the topic of mental action, we note that it is not presently known whether free will or any 
action of the mind exists. The neurophysiological functioning of the brain is not known in sufficient detail for it to 
be possible to determine whether free will exists by direct experimental measurements of brain processes (Burns, 
1996). Furthermore, presently known physical laws encompass only determinism and quantum randomness, so if we 
mean by "free will" a process which is different from these, it can only be accounted for by a radical addition to 
these laws, which would describe the physical effects of this action of consciousness (Burns, 1999). However, a 
variety of models of consciousness have proposed that mind can act on matter and have explored the means by 
which this action may relate to presently known physical laws, such as emergence, collapse of the wave function, or 
ordering of quantum fluctuations, some recent examples being Burns (2002a), Mohrhoff (1999), Mould (1998, 
1999), Sirag (1993, 1996), and Stapp (1993, 1999). These models show that it is at least possible for a radical 
addition describing the physical effects of consciousness to be compatible with presently known laws. 



With respect to the possibility that mind can have a physical effect outside the brain, we note that the way 
in which mental action would occur outside the brain would presumably be similar to the way free will would occur 
within the brain. If free will occurs (presently unknown), it seems reasonable that mental action outside the brain 
could also occur on a limited scale. Indeed, because of our present lack of detailed knowledge of the complex 
biochemical processes inside the brain, it might be easier to test for the existence of mental action, and explore its 
properties if found, outside the brain rather than within it. 

The organization of the rest of this paper is as follows. In Section 2 we will note that a cube may travel 
forward either by tumbling (with one corner always touching the surface the cube travels on) or by bouncing (in 
which the cube has a substantial vertical component of velocity and spends most of its time in the air). For simplicity 
we will consider the case of the tumbling cube in this section and show that the analysis also applies to a bouncing 
cube later on. 

The analysis of this section will show that a small change in the initial angular orientation of a tumbling 
cube can make a substantial change in its endpoint. Specifically, suppose that a cube makes s steps (tumbles about a 
corner) as it travels forward in the x direction. It is shown that if an influence produces a change 0δθ  in the initial 

angle of orientation, the change Y∆ in y coordinate at the end of the trajectory is given by Y∆ = a(s – s0), where a 
is the average step taken by the cube in the ±y direction during each tumble and s0 the minimum number of steps 
necessary before magnification can occur. We will also see that if an influence acts over the duration of the 
trajectory, nearly all the change Y∆  is produced in the first few steps of the trajectory, with effects from later steps 
being very small. 

In order to use the above formula, the average sideways and forward step lengths must be known. (The 
forward step length x∆  must be known in order to determine the number of steps s the cube travels.) In Section 3 
we will examine the dynamics of a tumbling cube and derive expressions for a and x∆ . We will see that a 
considerable simplification is possible when the forward velocity is such that a parameter ζ ≈ 1, because then a and 

x∆  have a fixed ratio. 
In Section 4 we will find the number of steps past s0 which are necessary to have a tumbling cube end its 

trajectory with a given side face up. 
Section 5 presents some additional details concerning the relationship between Y∆  and X. We will note 

that random perturbations from air currents and surface irregularities produce a Gaussian envelope about the 
endpoint Y∆  that would be obtained in the absence of these perturbations. Therefore, an experimental 
determination of Y∆  involves comparing the midpoint of the Gaussian envelope obtained when there is a mental 
intention with the midpoint of the Gaussian envelope obtained with no such intention (or with an intention for the 
opposite direction). 

In Section 6 we will see that the analysis of Section 2 also applies to a bouncing cube, and discuss further 
details of this mode of travel. 

In Section 7 an estimate of s0, based of Forwald’s (1959, 1969) experiments, is given. In Section 8 further 
details are discussed relevant to doing experiments. Section 9 summarizes the conclusions herein. 

2.0 The Deviation Y∆  of a Tumbling Cube 

A cube travels forward across a surface in the x direction. The z axis is normal to the surface, and the vector from the 
corner to the center of mass makes a skew angle to the z axis. (See Figure 1.) 

A cube may travel either by tumbling or bouncing. If it is tumbling, it always keeps a corner in contact with 
the surface it travels on and rotates about that corner. If it is bouncing, it has a vertical component to its velocity and 
spends most of its time in the air. In the next several sections we will discuss the tumbling cube, and we will expand 
our discussion to include the bouncing cube in Section 6. 

The motion of a tumbling cube is as follows. A corner is held in place by friction, and forward momentum 
causes the cube to rotate about that corner. During each forward step gravity produces a torque on the cube, and this 
causes the center of mass of the cube to rotate sideways -- to the right if the center of mass is to the right of the 
corner or to the left if the center of mass is to the left. Thus during each forward step the cube makes a sideways step 
in the y± direction. Let a be the average length of this step. 

We assume that the particular trajectory the cube follows depends on the initial angle 0θ  between the 

vector from the corner to the center of mass and the z axis (with 0θ  measured when the center of mass is in the y-z 



plane). (See Figure 2.) Whether the corner is to the left or right of the z axis in a given tumble depends on the value 
of θ  at the beginning of the previous tumble and the magnitude of the forward and sideways rotations during that 
tumble. We assume that in a large number of runs the initial angle 0θ  varies randomly and that trajectories with all 
possible combinations of left and right sideways steps occur, with each possible combination occurring in equal 
proportion. (The latter may not be strictly true, but should suffice for our analysis.)  
 
 

 
Figure 1. A cube tumbles forward along the x axis. Friction holds a corner in place, and the cube 
rotates about that corner by an average angle φ∆  during each tumble, such that the center of mass 
moves forward with average velocity u. The z axis is normal to the surface the cube tumbles on, 
which might be either horizontal (depicted here) or an inclined plane. The cube is oriented at a 
skew angle to the z axis. 

Each trajectory is also subject to numerous small influences, such as surface irregularities and minute air 
fluctuations, which vary randomly from run to run. Thus we can think of each initial angle 0θ  as being associated 
with a particular endpoint Y (where it would go if there were no random influences), plus an associated Gaussian 
distribution of endpoints caused by the random influences. 

We now assume that at the beginning of each run the cube is also subject to a small influence which is the 
same in magnitude and direction each time. This influence might be either physical (such as a small puff of air) or, 
as is proposed here, a mental effect. This influence shifts the cube from one trajectory, with its associated value of 

0θ , to another trajectory characterized by an initial angle shifted by 0δθ , and thereby shifts the original endpoint Y 

(with its associated Gaussian envelope) by Y∆ . 
 



 

Figure 2. Projection of the cube on the y-z plane, at the time when the center of mass is in the y-z 
plane. The vector from the corner to the center of mass makes an angle θ  with the z axis. Each 
side of the cube has a half-length b, and the distance from the corner to the center of mass is 

3b . 

The set of all possible trajectories describing Y as a function of 0θ  forms a continuum. However, for the 
sake of convenient analysis, we will represent them by a set of discrete trajectories. The number of possible 
trajectories ntraj is given by 

    ,2 s
trajn =       (1) 

where s is the number of forward steps. (See Figure 3.)  
 

 
Figure 3. The continuum of all possible trajectories is approximated by a set of 2s discrete 
trajectories, where s is the number of forward steps. The eight possible trajectories the cube can 
follow during three forward steps are shown. 

0θ  varies over a range Rθ , which equals π /3 by geometry of the cube. We assume that each discrete 

trajectory is equally probable. Therefore the spread in initial angle corresponding to each trajectory is Rθ /2s. 



We now ask the shift in endpoint Y∆  which is produced by 0δθ . Let us first assume that the change 0δθ  
takes place in a time t << τ , the time for one tumble. (We will take up the more general case later.) Then the 

number of trajectories m which corresponds to 0δθ  is given by 

    .
2
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m
s
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Suppose that 0δθ  is sufficiently large that the final step in a trajectory can be changed, with all previous 

steps unchanged. Then two trajectories are involved, with a distance y∆  between them of 2a. Because all 
trajectories are equally probable, the average position of the original endpoint is at the center of this space. So the 
average change Y∆  equals a. 

Next suppose that 0δθ  is sufficiently large that the final two steps in a trajectory can be changed. In that 
case 22 = 4 trajectories are involved, and the range in endpoints corresponding to these trajectories is 4a. The 
original endpoint would on the average be at the center of this range. So the average change Y∆  is 2a. 

In general, to produce an average change in endpoint of ra, 2r trajectories must be available for change. We 

set Y∆ = ra and m = 2r. Therefore Y∆ = alog2m, and by equation (2) Y∆  = a[s-log2( Rθ / 0δθ )]. We set Rθ = 
π /3 and define s0 by 

    .
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π
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We find 

    .)( 0ssaY −=∆      (4) 

We can understand the meaning of s0 in the following way. By geometry of the cube, the range of angles 

available to 0θ  is π /3. There are 2s discrete trajectories, so 1δθ , the spread in 0θ  which corresponds to one 

discrete trajectory, equals (π /3)/2s. When the trajectory has s0 steps, 0δθ  just fills 1δθ . In that case 0δθ is not 

large enough to allow a change to a neighboring trajectory, so Y∆ = 0. When the trajectory has more steps than s0, 

0δθ  corresponds to more than one discrete trajectory, and Y∆  can become greater than zero. 

The above equations were derived for the case when the change 0δθ  takes place at the beginning of the 

first step of the trajectory, with no change in 0θ  thereafter. Let us now ask the result if 0θ  changes throughout the 

trajectory. Let s′  be the number of steps remaining in the trajectory at any given time. Then 1( )sδθ ′ , the angular 

range corresponding to a single discrete trajectory, is (π /3)/ 2s′ . So if r trajectories are available for change during 
the first step, the total number rtot available for change is r[1 + 1/2 + (1/2)2 + (1/2)3 + ...], with the sum continuing 
for s steps. Therefore rtot < 2r. But rtot = 2r is the same result that would be achieved if the number of steps were s+1 
instead of s. Or, since Y∆  is proportional to (s-s0), this is equivalent to decreasing s0 by one step. Therefore, if a 
change 0δθ  during the first step produces a given value s0, the cumulative effect of making a further change 0δθ  
per step during each additional step in the trajectory can be no more than to reduce s0 by one step. The reason is that 
the number of trajectories which can fit in a given angular range decreases geometrically in each further step, so the 
effect of changes in 0θ  during steps past the first quickly becomes very small. 

The previous derivation also does not take into account the fact that even during the first step, the number 
of trajectories which can be affected is decreasing geometrically (from s to s-1). This also will be a small effect, but 



in the opposite direction to the above, i.e., it will tend to increase s0 slightly. The two above effects tend to cancel 
each other. Thus for a continuing influence which causes a change 0( )δθ τ  in the first step (and for which the 
rotation per step does not change exponentially in succeeding steps), we can write 
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Thus even if an influence acts on the cube throughout its trajectory, most of the deviation Y∆  is produced 
during the first few steps, with little contribution thereafter. On the other hand, the magnification results from having 
a sufficiently long trajectory, with s > s0. 

All dependence of Y∆  on the rotation 0δθ  is contained in the term s0. And because s0 depends 

logarithmically upon 0δθ , its dependence on all factors contributing to 0δθ  is logarithmic (unless any of those 
factors increases exponentially along the cube trajectory). 

3.0 The Sideways and Forward Step Lengths 

If we wish to use equation (4), we need to know a and s. To determine these experimentally, the average number of 
corners a cube tumbles about when it travels a given distance in the y direction (for a) and the x direction (for s) 
must be found. While high-speed movies could be taken, the problem in making these measurements is that the view 
of the corner the cube tumbles on would often be obscured and it would be difficult to tell when the cube had 
changed from one corner to another. However, we can analyze these theoretically. We will find that if a certain 
parameter ζ  is about equal to one, the sideways and forward step lengths have a constant ratio, a very convenient 
relationship which simplifies the use of equation (4). 
 Let us start our analysis by setting forth some basic relationships. As specified in Section 2, a cube tumbles 
forward in the x direction across a surface, which might be either horizontal or an inclined plane (i.e., a ramp). The x 
and y axes are parallel to the surface (with the x axis pointing down the ramp), and the z axis is normal to the 
surface. 

During each tumble, the cube rotates through an angle φ∆  about the y axis. Eφ , the portion of the kinetic 

energy due to motion in the xz plane, is given by Eφ = 1/2 Iφ
2

φω , where φω  is the angular velocity about the y 

axis and Iφ  is the associated moment of inertia about the corner. But Eφ = 1/2 M(u2+v2), where u is the x 

component of the velocity of the center of mass, and v is its z component. The term involving v2 is due to a small 
displacement of the center of mass as the cube rotates, and can be neglected. We take u to be the average value of 
the forward velocity, and find 

    .)/( 2/1
φφω IMu=      (6) 

The moment of inertia of a cube about an axis through its center of mass is proportional to Mb2, where b is 
the half-length of a side; the constant of proportionality is a number near unity, the exact value depending on the 
orientation of the axis and the distribution of density (e.g., whether the cube is solid or hollow). To evaluate the 
moment of inertia about a corner, we assume that the center of mass is directly above the corner the cube is rotating 
about, and neglect variations due to rotations in φ  and θ  because, by the geometry of the cube, neither angle can 

vary more than 30°  from the vertical. We similarly assume that the center of mass moments of inertia about the x 
and y axes are the same. The values of Iφ  and Iθ , the corresponding moments of inertia about an axis through the 

corner of the cube, can be found from the parallel axis theorem (Goldstein, 1980): the term 3Mb2 must be added to 

each center of mass moment because the corner is a distance 3b  from the center of mass. We have 

    ;θφ II =       (7) 



    .4 2γθ MbI =       (8) 

where γ  is a factor close to one. 
A cube with its center of mass at a skew angle to vertical will tumble about six different corners in a full 

rotation of 360° . Hence on each tumble, the cube rotates an average angle φ∆  of 60° . We will take the effect of 

sideways rotation into account in the next subsection. We wish to know the time φτ  the cube takes to rotate through 

an angle φ∆  of 60° . We have 

    .3/πτωφ φφ ==∆      (9) 

Evaluating φτ  using equations (6), (7), (8) and (9), we find 

    .
3

2 2/1γ
π

τ φ u
b

=      (10) 

We will see in the next subsection that when the cube is slowing down near the end of its trajectory, the 
time for the next successive corner to reach the surface is determined by the sideways rotation, not the forward 
motion. In that case the time between successive tumbles will be less than the time φτ  for the cube to rotate forward 

by 60° . We will compute the time between successive tumbles in the next subsection. 

3.1 The Sideways Step Length 

During each tumble the center of mass of the cube travels a sideways distance a because of the rotation produced by 
gravity. Let θ  be the angle between the vector from the corner to the center of mass and the z axis. (We measure θ  
when the center of mass is in the yz plane and neglect the small variation in θ  which occurs during a forward 
tumble in the absence of sideways rotation.) The projection y of that vector on the y axis, and its differential change 
dy, are given by (see Figure 2) 

    ;sin3 θby =      (11) 

    .cos3 θθ dbdy =      (12) 

Gravity produces a torque L which acts from the corner to the center of mass; we have  
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where g is the acceleration of gravity and i is the inclination of the plane (ramp) the cube travels on. We set 
sinθ =θ , because θ  can be no greater than 30° , by geometry of the cube. Then 

    ,2
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where 
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There are two solutions to equation (14), proportional to exp(C1/2t) and exp(-C1/2t), respectively. The 
solution exp(-C1/2t) describes the case in which the sideways deviation is decreasing instead of increasing as the 
cube makes its irregular sideways path. However, we are only interested in the net sideways deviation, not the back 
and forth motion, so we do not need the latter solution. So we have 

    .)exp( 2/1
0 tCθθ =      (16) 

We set the initial angle 0θ  equal to its average value. θ  has a range from 0°  to 30° , so we set 0θ = π /12. 
In finding the sideways step length another consideration is involved. We noted earlier that in the absence 

of sideways rotation a cube tilted at a skew angle will make six tumbles in a rotation of 360° . If θ∆ , the angular 
deviation per step, is small, this will continue to be true, and we can find θ∆  by integrating the above equation 
from t = 0 to t = φτ . (If the net sideways deviation is n steps, we integrate to n φτ  and divide by n to find the 

average angular deviation per step.) However, if θ∆  is sufficiently large that θ  reaches π /6 during a tumble, then 
a new corner touches the surface because of the θ  rotation instead of the φ  rotation. We now wish to know the 

condition under which θ∆  reaches its maximum value, π /6 – 0θ = π /12, during a tumble. 

Let us define a parameter ζ  by setting ζ φτ  equal to the time it takes for the cube to rotate from 0θ  to 

π /6, according to equation (16). We have 
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Substituting 0θ = π /12, we find exp(ζ C1/2
φτ ) = 2. Therefore, 
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By equations (8), (10) and (15), 
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Therefore 
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If ζ < 1, then a new corner touches the surface because θ∆ , rather than φ∆ , has reached its maximum 
value. We write 

    )1(12/ ≤=∆ ζπθ      (20) 



To find the linear step length a we substitute increments for differentials in equation (12) and set cosθ  equal to its 
average value in the interval, 3/π , to find 

    )1(
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Let τ  be the time for one tumble. We have τ = φτ  when ζ > 1 and τ = ζ φτ  when ζ < 1. Using 

equation (10) and dropping a factor 1 / 2γ  ≈  1, we write 
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3.2 The Forward Step Length 

The distance from a corner to the center of mass, projected on the xz plane, is 3b cosθ . (The variation in y over 
the course of a step is neglected.) Therefore, x∆ , the distance traveled forward by the center of mass during one 

step, is given by 2 3b cosθ sin( φ∆ /2), where φ∆  is the angle the cube rotates in the xz plane as it tumbles about 

a single corner. (See Figure 4.) Setting sin( φ∆ /2)  = φ∆ /2, we have 

    φθ ∆=∆ cos3bx      (23) 

 
Figure 4. As the cube tumbles about a corner, the center of mass rotates by an angle φ∆  about 

the y axis (perpendicular to the page) and thereby travels forward a distance x∆  along the x axis. 

As discussed above, the value of φ∆  depends on a parameter ζ . At the beginning of the trajectory, when 

ζ > 1, φ∆  = π /3. However, as the forward velocity u becomes small through frictional losses, the increased time 
for each tumble allows the cube to rotate more in the yz plane. After the latter rotation reaches its maximum value, 
π /12, then φ∆  = ζ π /3. Setting cosθ  equal to its average value in the interval, 3/π , we write 

    )1(3 ≥=∆ ζbx      (24) 

 

 



3.3 The Ratio of Step Lengths When ζ  = 1 

If the cube tumbles down a gently sloping ramp such that ζ = 1 over much of its trajectory, then by equations (21) 
and (24) 
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4.0 Mental Intention for a Given Side of a Cube to End Face Up 

If a person is gambling with dice, he or she intends that a given ("target") side of the cube be face up at the end of a 
trajectory. Let us therefore ask the number of steps past s0 in which the odds for ending with a given side face up are 
substantially improved. 

The conditions to ensure that a target side end face up are more complex than those to simply ensure that 
the cube be cumulatively deviated in a given direction because the cube can stop traveling for several different 
reasons. In the first place, friction gradually decreases its velocity. So if no other factor comes into play, eventually 
there will be insufficient velocity to rotate the center of mass about a corner and the cube will stop. On the other 
hand, if two corners reach the surface at about the same time, and the velocity is orthogonal to the edge between 
these corners. the cube will start to roll. It will then come to a stop from a rolling motion, not from tumbling. And 
finally, if two corners reach the surface at about the same time, and the velocity is not sufficiently orthogonal to the 
edge between the corners, the cube will stop traveling. So the side which ends face up depends on details of its 
orientation and direction of travel during the final steps of the trajectory, and not merely on its sideways deviation. 

Nevertheless, as we have seen in the previous section, each sideways step corresponds to a rotation of the 
center of mass about a corner, so a net sideways deviation of a sufficient number of steps will produce a sufficient 
cumulative rotation for the cube to end with a different side face up. As noted earlier, a cube oriented at a skew 
angle tumbles about six corners in a full rotation. Therefore, a sideways rotation of ± π /3 ensures that two 
additional faces can be accessed. We ask the number of steps f past s0 necessary to produce this rotation. 

Equation (4) expresses the deviation Y∆  of the cube in terms of linear steps of length a. However, we can 
equivalently define ∆Θ  to be the total angular deviation, and noting that θ∆  is the angular deviation per step, we 
write ∆Θ  = θ∆ (s - s0). We then have 

    .3/πθ =∆=∆Θ f      (26) 

In general, we do not know the value of a or θ∆ . However, if ζ ≈  1, then θ∆  = π /12 (equation (20). 
In that case f = 4. 

Thus for the case when ζ ≈ 1, the probability that a given (“target”) side ends face up is substantially 
increased in only four steps past s0. Even though three sides out of the six can potentially be accessed, we cannot say 
that the probability of ending with the target face reaches 1/2 for two reasons: (a) as described above, having a given 
side end face up involves more complexity than simply producing a cumulative deviation, and (b) as noted in 
Section 2 and to be discussed more fully in the next section, various fluctuations such as air currents produce a 
Gaussian envelope about each unperturbed endpoint, and these random fluctuations would prevent full accessing of 
other target sides. 

5.0 Further Details About the Deviation Y∆  

In this section we will discuss further details on the relationship between Y∆  and X, the forward distance traveled. 
Noting that X = s x∆ , let us rewrite equation (4) in the form 

    .0 xsXY
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     (27) 



If we were to plot a series of measurements of Y∆  against X, we would want to have the line rise with a 45°  slope, 
for ease in recognizing the point x∆ s0, and that is the reason for writing the equation in that form. 

Obviously, therefore, it is useful to know the values of x∆  and x∆ /a. In general, these are not well known 
theoretically, although they can be estimated. (See example in Section 7.) However, in the case that the parameter 

ζ  (equation (19)) = 1, we know from equations (24) and (25) that x∆ = 3b  and x∆ /a = 4. In that case we can 
write 

    )1()3(4 0 =−=∆ ζsbXY     (28) 

This equation is plotted as the dashed line in Figure 5. 

 
Figure 5. The dashed line shows 4 Y∆ as a function of X as predicted by equation (28). The solid 
curve shows the gradual increase from X = 0 and the steepening of the curve near the end of the 
trajectory when further details are taken into account. The above curve is drawn for the particular 
case of a tumbling cube for which the parameter ζ ≈ 1 over much of the trajectory. In that case 

X0, where equation (28) begins its rise, equals 3b s0, where b is the half-length of a side. 

5.1 The Set of Trajectories Forms a Continuum, Not a Discrete Set 

As noted in Section 2, equation (4) (and succeeding equations (27) and (28)) are based on an analysis in which the 
continuum of possible cube trajectories is represented by a set of 2s discrete trajectories. This analysis only allows 
endpoints to change from one discrete trajectory to another and does not allow changes by a fraction of a trajectory. 
For that reason these equations predict that Y∆ = 0 for s < s0. In actuality the trajectories form a continuum and a 
change corresponding to a fractional shift in a discrete trajectory can occur. Therefore, as depicted by the solid line 
in Figure 5, a small but non-zero deviation can occur when s is less than s0. 

5.2 Increase in Sideways Step Length as the Forward Velocity Approaches Zero 

Also, the derivation leading to equations (4), (27) and (28) used average values for the sideways and forward step 
lengths. However, as a cube slows down and comes to rest, the forward step length will necessarily drop to zero. We 
saw earlier that as the cube slows down in its forward travel, more time is available for it to rotate sideways during 
each step. So the forward step length will decrease more rapidly than the sideways step length, and the slope of the 
curve of ( x∆ /a) Y∆ versus X will increase. The solid curve in Figure 5 shows this increase in slope toward the end 
of the curve. 



5.3 Each Endpoint is Associated with a Gaussian Envelope Due to Random Fluctuations  

For a given initial angular orientation, a cube will have a specific endpoint Y. However, we assumed (in Section 2) 
that in a large number of trials the cubes will start with all possible angular orientations, and will thereby travel all 
possible 2s discrete trajectories, with equal weighting to each one. For that reason the distribution of endpoints will 
form a Gaussian curve with root mean square width (standard deviation) <Y2>1/2 = s1/2a (Haken, 1983). In addition, 
the cube will undergo a random assortment of perturbations from surface irregularities and air fluctuations, and as 
we have seen, such perturbations, especially during the first step, will affect the final position Y. Because these 
additional factors are random, they will not affect the  above distribution. However, we must keep in mind that 
because the endpoints Y of the cube can only be viewed via this distribution, formed from all these random sources, 
the curve for Y∆  in Figure 5 must be understood as the separation between the midpoints of two Gaussian 
distributions, the one that would be obtained without the effect of mental influence and the one that would be 
obtained when it is present. 

Let us further note that the standard deviation of the Gaussian curve is apt to be comparable in size to the 
deviation Y∆  produced by mental intention. Specifically, from equation (4) and the above expression for the 
standard deviation, their relationship is 
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Therefore, a large number of trials must be made in any experiment, so the Gaussian curves corresponding to the 
shifted and unshifted conditions can be distinguished. 

6.0 Bouncing Cubes 

In Section 3 we analyzed the sideways and forward step lengths of a tumbling cube. In the latter type of travel the 
cube keeps a corner in contact with the surface it travels on, and the cube travels forward by a series of rotations 
(tumbles) about its corners. However, a cube can also travel forward by bouncing, i.e., with a substantial component 
of velocity normal to the surface it travels on, such that it is airborne most of the time. Let us now make a 
comparison of these types of travel. 

First, we should note that the derivation of the equations in Section 2 applies equally to bouncing and 
tumbling cubes. All that is needed is for the cube to travel forward s steps, while taking a sideways step of average 
length a during each forward step, and that in a large number of trials in which the initial angle varies randomly, all 
of the 2s possible trajectories occur, with each one occurring in equal proportion. Therefore, equations (3), (4) and 
(5), and accompanying discussion, are valid for bouncing cubes as well as tumbling cubes. 

On the other hand, in a given distance X of forward travel bouncing cubes will probably produce less 
sideways deviation Y∆ . The reason is that the forward step length will be longer. Therefore, X will include fewer 
steps. Furthermore, s0 will be the same because it depends only on the angular shift in initial orientation. So if the 
forward step for a bouncing cube is twice as long as that for a tumbling cube, for instance, a bouncing cube will 
have to travel twice as far before reaching s0. 

These types of travel also differ in the source of the sideways step. A tumbling cube rotates sideways 
because a corner remains in place and gravity, acting on the center of mass, thereby produces a torque. A bouncing 
cube has no torque exerted on it during the time it spends in the air. In fact, in most experiments using bouncing 
cubes (Forwald, 1959, 1969; Radin & Ferrari, 1991) multiple cubes have been used which strike against each other 
and against adjacent walls, and the sideways steps come about because of these impacts. However, the sideways 
velocity comes at the expense of the forward component of the kinetic energy, and the cubes don't travel as far 
forward. 

Realistically, any traveling cube is apt to both tumble and bounce over its trajectory, the relative degree of 
each depending on the particular setup used. If an experimenter is seeking to use the ζ = 1 condition described 
herein, it is preferable to use a ramp, let the cubes start from rest, and keep bouncing to a minimum. (For further 
discussion, see Section 8.) On the other hand, in Forwald's (1959, 1969) deviation experiments, which we will refer 
to in the next section, cubes were dropped from a height, tumbled and bounced down a short runway, and then 
traveled across a table top. Probably the cubes mostly tumbled in the latter part of these trajectories. 



7.0 Estimated Value of s0 

Let us now inquire as to what previous experiments on the effects of mental influence on traveling cubes can tell us 
about the value of s0. A number of experiments studying the effect of mental influence on dice have been done, with 
meta-analysis of these showing a statistically significant effect (Radin & Ferrari, 1991). However, in these 
experiments cubes were bouncing over relatively short trajectories, so results probably correspond to the part of the 
curve where s < s0. 
 On the other hand, a Swedish engineer, Haakon Forwald, conducted numerous cube deviation experiments 
a number of years ago (Forwald, 1959, 1969). Forwald did not know that a cube trajectory is extremely sensitive to 
air pressure and consequently took no precautions regarding the influence of breath or hand motions. (He stood next 
to the table the cubes tumbled on while focusing on his intention.) However, he got significant results in deviation 
experiments using a fairly long trajectory, which may have been due to mental influence, so his results can at least 
provide a tentative value of s0. 
 In Forwald's experiments cubes were allowed to follow their trajectories until they naturally came to rest. 
The cubes typically traveled a distance of 15 cm down a ramp (McConnell & Forwald, 1968) plus 35 cm across a 
horizontal surface, for a total of 50 cm. The cubes had a half-length b of 0.8 cm. The average deviation Y∆  was 
typically about 5 cm. This effect seems big enough that he would have been working in the range where s > s0. 

The cubes were dropped onto the ramp and undoubtedly bounced as they were traveling down it. However, 
they probably mostly tumbled as they traveled across the tabletop. The value for ζ  will help us estimate the step 

lengths. Using equation (19) and the above value for b, we have ζ = u/55.6. Forwald (1959, 1969) gave the forward 
velocity u0 when the cubes reached the tabletop as 186 cm/sec. (The latter was computed from the height the cubes 
traveled down the ramp.) Therefore, the cubes started across the tabletop with ζ  greater than 3. This means that for 

most of their travel the forward step x∆  was 3b . We will assume that the longer steps down the ramp, when the 
cubes were bouncing, were approximately balanced by the shorter steps after they dropped below 55.6 cm/sec, and 

take the average value of x∆  as 3b . We note that X = s x∆  and substituting X = 50 cm, find s ≈ 36 steps. 
Let us now estimate s0. We write equation (27) in the form s0 x∆  = X – ( x∆ /a) Y∆ . If the cubes had 

gotten their sideways velocity only from tumbling, and ζ  ranged around 1, x∆ /a would range around 4 (equation 
(25)). However, the cubes were striking against each other as they traveled on the ramp, and they gained energy in 
their sideways motion that way. Therefore, we estimate x∆ /a = 2. Values of this ratio of either 4 or 1 seem unlikely 
(the latter would have the cubes traveling at a 45°  angle to their initial direction during each step), and we take the 
range to be 1.5 to 2.5. From this range and midpoint we find (in round numbers) that s0 = 29 ± 2. The forward 
distance of travel, X0, corresponding to these values of s0 is (in round numbers) 40± 3 cm. 

As a matter of interest let us also compute Y∆ /< 2Y >1/2. Using equation (29) we find Y∆ /< 2Y >1/2  = 
(36-29)/361/2  = 1.17. So the shift Y∆  was about the same as the standard deviation of the original distribution. 

8.0 Experimental Considerations 

According to equation (4) and the discussion of Section 5, the action of mental influence on a traveling cube will 
produce an average sideways deviation which is small until the cube has traveled a certain number (s0) of forward 
steps, shows substantial increase at that point, and increases with distance thereafter. 

In order to test this prediction a set of measurements can be made at varying travel distances X. The cubes 
could be filmed by an overhead camera and measurements of Y∆  made at a set of distances along each trajectory. 

Compensation can be made for possible right-left bias in the following way. In Part A of each experimental 
set a certain number of trials are accompanied by the mental intention that the cube will be deflected to the right, and 
in Part B the same number of trials are accompanied by the mental intention that it will be deflected to the left. The 
average deviation Y∆  then is one half the difference between the average Y coordinate for the B readings and the 
average Y coordinate for the A readings. (This is the method that Forwald (1959, 1969) used.) 

In designing an experiment the following points should be taken into account. 
1. As we have seen, the sideways deviation Y∆  is extremely sensitive to perturbations during the first few 
steps of the trajectory. Thus in order to test for the effects of mental intention, the cube must be shielded from any 



air currents which might be correlated to intention, such as those produced by breath or hand movements. 
(Unfortunately, it was not previously recognized that a cube trajectory could produce this extreme magnification, 
and previous parapsychology experiments with traveling cubes have not taken precautions for this.) 
2. As discussed at the beginning of Section 3, it would be difficult to determine the forward and sideways step 
lengths experimentally. However, we have seen that if the forward velocity of a tumbling cube is such that the 
quantity ζ  (equation (19)) ≈ 1, then the average values of these quantities have a ratio of 4 (equation (25)). For that 
reason it will probably be more convenient to have cubes tumble down a gently sloping ramp and use this 
relationship. An additional convenience of using a ramp is that the acceleration imparted from it will help keep the 
cubes tumbling for a greater distance. 
3. Realistically, as cubes tumble, they are also apt to bounce and skip to a certain extent. However, if the 
motion is primarily tumbling and the step length during bounces is not much greater than that during tumbling, this 
should suffice for the above relationship. 
4. The coefficient of friction between the cubes and the surface they travel on should be sufficient that the 
cubes will tumble rather than slide. (Forwald had his cubes travel on a surface of smooth woodfiber board with a 
sliding coefficient of friction of 0.4. For discussion of this and further details of Forwald's experimental setup, see 
McConnell & Forwald (1968).) 
5. Cube trajectories have certain idiosyncrasies. If two corners of a cube reach the surface at about the same 
time, and the direction of motion is orthogonal to the edge, the cube will start to roll instead of tumble. If two 
corners reach the surface at about the same time, and the direction of motion is not orthogonal to the edge, the cube 
will come to a dead stop, a phenomenon often seen. At the end of the trajectory, when the forward velocity is very 
small, a cube will sometimes make continued sideways steps in the same direction and trace out a semi-circle. 
Strictly speaking, the latter displacements should not be counted in determining Y∆ , as this motion was not taken 
into account in the analysis. 
6. Multiple cubes can be used in each experimental trial. However, if the above condition (ζ ≈ 1) is used, 
then tumbling cubes should not be allowed to strike each other (or anything else), as this action would change the 
average sideways step length and was not provided for in the analysis. (See Burns (2002b) for further discussion on 
the use of multiple cubes.)  
7. It should be noted that Forwald felt that he could produce much better results when he did no more than 
one set (10 cube releases) per day (Forwald, 1969). Researchers exploring other mental effects, such as remote 
viewing, also report that better results are obtained when only one experiment is done per day (Targ & Katra, 1997), 
so experimenters studying mental influence on traveling cubes may want to use the same policy. 
8. It is likely that individual persons differ in their ability to affect an object through mental influence 
(Broughton, 1991). Therefore, different people will produce somewhat different values of s0 for a traveling cube, 
and such differences will smear out the graph in Figure 5. For that reason, it is preferable to use a relatively small 
pool of subjects who may be reasonably supposed to have comparable abilities in producing mental influence. 

9.0 Summary 

It is not presently known whether mental influence exists, or if it does, whether it is inherently small and must be 
magnified to produce effects at the macroscopic level or whether it can act directly at that level. However, in this 
article we have supposed that mental influence is an inherently small effect and asked how it could affect the motion 
of a traveling cube. 
 We have seen that a traveling cube can greatly magnify a small change in angular orientation in the 
beginning of its trajectory, to produce a macroscopic shift sideways at the end of it. Thus if mental influence is 
inherently small, it can take advantage of this exceptional magnifying effect to produce a macroscopic change, and 
that may be the reason that tumbling cubes (dice) have been popular in games of chance for many centuries. 
 Specifically, we have seen that if a cube is traveling forward in the x direction, the shift Y∆  in the average 
sideways position of the endpoint equals a(s-s0), where a is the average sideways step length, s is the number of 
steps (changes from one corner to another) in the trajectory, and s0 depends logarithmically on the angular change. 
Nearly all of the shift Y∆  is produced by changes in the angle of orientation during the first few steps in the 
trajectory, with changes in this angle in further steps being unimportant. However, it is necessary to travel a 
minimum number of steps s0 before any substantial amount of magnification can take place. 



 It must be kept in mind that various random factors, such as air fluctuations, that the cube encounters in its 
first steps are also magnified. In the absence of these random factors, a cube starting with a given angular orientation 
would have an endpoint Y in the absence of mental intention, and would be shifted by an amount Y∆  when mental 
intention is present. However, the random factors produce a Gaussian envelope in endpoints about Y, and similarly 
in the presence of mental intention produce a Gaussian envelope about the endpoint shifted by Y∆ . Therefore, 

Y∆  must be found experimentally as the difference between the midpoints of two Gaussian distributions of 
endpoints. Because the effects from random factors are apt to be as large, or larger, than those from mental intention, 
it follows that a large number of experimental trials are likely to be needed to establish the presence of mental 
influence. 
 It also follows from the tumbling cube's extreme ability to magnify initial changes that precautions must be 
taken to insulate the cubes from air currents from any breath or hand motions which might be correlated with mental 
intention for deviation in a given direction. 
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