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MODEL OF EXOCYTOSIS TO MOLECULAR BIOLOGY OF SNARE ZIPPING

Danko D. Georgiev and James F. Glazebrook* 
Department of Environmental and Occupational Health, Graduate School of Public Health, University of 
Pittsburgh, Pittsburgh, PA, USA, and Department of Mathematics and Computer Science, Eastern Illinois 
University, Charleston, IL, USA 

We commence this review by outlining the challenges faced by physical theories of consciousness and briefly describe the two main 
approaches based on classical or quantum mechanics. Next, we provide a detailed exposition of the motivation, the theoretical 
construction and experimental falsification of the celebrated model due to Beck and Eccles concerning mind-brain interaction 
purported to operate at the sites of neurotransmitter release in the brain. Finally, we propose our own model of a vibrationally 
assisted quantum tunneling mechanism involving a Davydov soliton propagating along the hydrogen bonds in the protein four-α-
helix bundle of the SNARE complex (soluble NSF attachment protein receptor; NSF, N-ethylmaleimide sensitive fusion proteins) 
that drives synaptic vesicle fusion. We also discuss the possible experimental tests that could falsify our model. Since erasure of 
consciousness by volatile anesthetics results from binding to the hydrophobic core of the SNARE four-α-helix bundle, our model 
is well suited to support quantum interactive dualism. Biomed Rev 2014; 25: 15-24.

Key words: brain, conscious experience, dualism, quantum mechanics, neurotransmitters

INTRODUCTION

The large-scale anatomy of the brain and its histology are 
currently well understood (1-3). While at the macroscopic 
level no further significant discoveries are likely to be 
made, molecular neuroscience has made strides towards 
elucidating the structure and function of neurons down at 
the nanoscale (4, 5). At the microscopic level, the brain is 
composed of neurons assembled into neural networks (6). 

Each neuron is composed of three compartments: dendrites, 
soma and axon, respectively specialized to input, process 
and output information by transmitting electric signals (Fig. 
1). The electric currents propagating along the neuronal 
projections are due to the opening or closing of excitatory 
or inhibitory ion channels incorporated in the neuronal 
membrane. Physiologically most important are three groups 
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of voltage-gated ion channels: sodium (Nav), potassium (Kv) 
and calcium (Cav) ion channels, respectively conductive for 
Na+, K+ or Ca2+ ions (7-9).

Varying the relative abundance of each channel type in 
different neuronal compartments (apical or basal dendrites, 
soma and axon) allows neurons to perform a large number of 
computational tasks such as learning, acquiring knowledge, 
memorization, prediction, memory recall, problem solving, 
optimization, class identification, categorization, pattern 

recognition, and error correction. Despite the spectacular 
success of computational neuroscience in regard to solving 
all of the comparatively straightforward problems concerning 
input, processing, storage, and output of information (10-
12), next to nothing has been done to address the really hard 
problem of consciousness, namely what exactly is the nature of 
consciousness, how the neurons in the brain generate conscious 
experiences, and for what reasons do we possess consciousness 
in the first place (13-15).

Figure 1. Morphology of a pyramidal neuron from layer 5 of the motor cortex (Neuromorpho.org NMO_09566) and common 
structure of voltage-gated ion channels. Apical and basal dendrites receive synaptic inputs in the form of excitatory or inhibitory 
electric currents that summate spatially and temporally at the soma. If the transmembrane voltage at the axon initial segment 
reaches a certain threshold of depolarization around -55 mV the neuron fires an action potential (spike) that propagates along 
the axon to affect the dendrites of target neurons. Neuronal electric properties are due to opening and closing of sodium (Nav), 
potassium (Kv) and calcium (Cav) voltage-gated ion channels. Structurally, each channel is built of four protein domains I-IV, 
each of which contains six transmembrane α-helices (1-6). The channel pore is formed by protein loops (P) located between 
the 5th and 6th α-helices, whereas the voltage-sensing is performed by the 4th electrically charged α-helix within each domain.
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CONSCIOUSNESS IN CLASSICAL PHYSICS

We are sentient beings. This means that the only way to 
access our inner selves and the surrounding world is through 
our conscious experiences (15-17). In complete absence of 
our experiences (during general anesthesia, for instance) 
our consciousness is lost too. The brain state during general 
anesthesia, however, is fundamentally different from a dead 
brain state, and consciousness can be regained (18). Despite 
the apparently intimate connection between the brain and 
the generation of consciousness, all approaches based on 
classical physics have failed to provide a satisfactory theory 
of what consciousness is, and how it relates to the brain (19). 
Without trying to exhaust all of possible paradoxes that occur 
in classical theories of consciousness, we will provide an 
argument that nicely illustrates the type of impasse that results 
from a straightforward application of rational thinking as based 
on current biomedical knowledge.

Firstly, one could subject to a critical test the mind-brain 
identity theory according to which the mind is the brain (20). 
Such an identification could work only if it were impossible 
to have unconscious brains (16). A spectacular example is 
the ability to erase conscious experiences during general 
anesthesia; yet, a flash of light into the eye of an anesthetized 
animal is nevertheless able to evoke sensory potentials from 
pyramidal neurons in the primary visual cortex (21). If mind 
states were identical to brain states, it should be impossible 
to turn them on or off using anesthetics, because the brain 
states always remain brain states. Secondly, one could also 
criticize the possible retreat from the mind-brain identity 
theory according to which only some brain states elicit 
conscious experiences, whereas other brain states do not. It 
can be shown that such a move leads to severe problems in 
the face of epiphenomenalism, a challengeable viewpoint 
that sees conscious events as produced by physical events 
occurring within the brain, but those conscious events have 
no effects upon any physical event occurring within the brain. 
An epiphenomenon, for example, is the shadow of a walking 
man; it accompanies the traveler but has no causal influence 
upon his steps (22). To show that any possible classification 
of brain events into conscious or unconscious implies 
epiphenomenalism, one needs only to resort to the causal 
closedness of the world in the classical physics. The causal 
closedness means that only physical attributes such as the 
mass, charge, length and time, are able to affect the behavior 
of a physical system. Because classical physics is governed by 
deterministic physical laws, once you know the physical state 
of a system you can calculate with arbitrarily high precision 
its state at any future time (23). For instance, if one considers 

the electric firing of pyramidal neurons in the visual cortex 
of an individual that is either awake and conscious, or under 
general anesthesia (and determined to be unconscious), it is 
straightforward to conclude that according to classical physics 
in both cases the future dynamics would depend only on the 
exact physical state (including the distribution of ions across 
the neuronal membrane, the opening or closure of various 
ion channels, etc.). This means that the conscious experience, 
pleasant or unpleasant, has no way whatsoever to affect the 
future dynamical behavior of the brain. However, according to 
the evolution theory, something that is not causally effective 
cannot lead to evolutionary advantage and cannot be selected 
by natural selection (22, 24, 25). The above impasse is the 
current status of the classical theory of consciousness, but 
a vast majority of neuroscientists still believe that classical 
physics is going to yield a solution of the mind-brain problem 
(26-28). In their view, what is needed is more experiments, 
more imagination, and persistence in following a deterministic 
classical approach to the problem, hence leading to the 
pitfall of the mereological fallacy which attempts to attribute 
states of consciousness exclusively to neurophysiological/
neuroanatomical processes within the brain (29).

CONSCIOUSNESS IN QUANTUM PHYSICS

Fortunately, in 1920s with the birth of quantum mechanics, 
which describes the behavior of elementary physical particles, 
it became clear that classical mechanics is neither the only 
possible description of the physical world, and furthermore, 
nor is it the correct one. The behavior of elementary physical 
particles was found to be inherently indeterministic so that one 
cannot predict with certainty the future state of an individual 
particle, but only the probability with which a given future 
state would occur. In an indeterministic quantum world, 
epiphenomenalism is no longer unavoidable (16, 19). Instead, 
it is natural expect that conscious experiences and conscious 
choices in such a world would be causally effective in realizing 
or actualizing one physically possible alternative over another.
Sir John Eccles, who won the 1963 Nobel Prize in Physiology 
or Medicine for his work on synaptic function, was one of the 
first who understood the importance of quantum mechanics 
for resolving the mind-brain problem, and proposed that 
mental events can cause brain events analogously to how 
the wavefunction ψ(x,t) in quantum mechanics determines 
the probability |ψ(x,t)|2 for a given quantum particle to be 
found at a certain position x at a certain moment of time t 
(30). Because quantum mechanics governs the behavior of 
physical systems at the nanoscale level, Eccles hypothesized 
that quantum effects could be manifest in the process of 
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neurotransmitter release. This appeared to be consistent with 
the principles of quantum mechanics because the synaptic 
vesicles are approximately of the right size (40 nm in diameter) 
so as to be subjected to the quantum uncertainty relations, and 
because the probability of exocytosis is much smaller than 1 
upon each axonal depolarization. Importantly, his hypothesis 
made interactive dualism feasible – the mind composed of 
conscious experiences could causally interact with the brain 
without violating the laws of quantum physics (30).

THE BECK AND ECCLES MODEL OF EXOCYTOSIS

In 1992, Eccles collaborated with the quantum physicist 
Friedrich Beck to further elaborate on the hypothesis of 
mind-brain interaction and formulate it within a detailed 
biophysical model of exocytosis that utilized the effects of 
quantum tunneling (31). The general features of the Beck 
and Eccles model are as follows: Firstly, each axon terminal 
contains approximately 50 synaptic vesicles anchored in a 
presynaptic vesicular grid. When an axonal electric spike 
depolarizes the axon terminal, at most one synaptic vesicle 
releases its neurotransmitter content in the synaptic cleft, 
and the probability for such an event is approximately 0.4. 
Because each neuronal axon has over 1000 presynaptic axon 
terminals, if the neurotransmitter release was due to classical 
random thermal fluctuations, then brain functional mechanism 
would be thrown into complete havoc within seconds. In view 
of the organizational structure of the brain, Beck and Eccles 
concluded that the probability of release should be quantum 
mechanical in origin and subject to direct causal influence by 
means of one’s own consciousness.

Secondly, exocytosis needs to be a conditional event 
depending upon the depolarization of the axonal terminal. This 
means that influx of Ca2+ ions is a necessary, but not sufficient 
condition, for exocytosis to occur. Instead, exocytosis is 
triggered by the quantum tunneling of a particle with mass m 
satisfying the one-dimensional Schrödinger equation:
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The potential energy V(x) in the Schrödinger equation acts 
as a barrier for the motion of the particle. The particle moves 
freely in regions where the potential energy is zero, similarly 
to the classical case. However, a classical particle cannot enter 
regions in which the energy of the particle is less than the 
potential energy, E0 < V(x), whereas a quantum particle can. 
In fact, due to the requirement for continuity of the quantum 
wavefunction ψ(x,t), the quantum particle is able to tunnel 
through the entire width of the potential energy barrier V(x), 
and appear on the other side (Fig. 2). In a straightforward 
calculation, Beck and Eccles determined that their model 
is physically plausible if the mass of the quantum particle 
triggering the exocytosis is less than 6 hydrogen masses (31, 
32). From this estimate, they also concluded that a quantum 
mechanical trigger for exocytosis must reside in an atomic 
process such as the movement of a hydrogen bridge by 
electronic rearrangement.
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Figure 2. Quantum tunneling through a potential barrier. According to classical physics, an incoming particle of energy E0 
less than the height V(x) of a barrier cannot penetrate into the classically forbidden region inside the barrier. The quantum 
wavefunction ψ(x,t) of a quantum particle, however, must be continuous and as a result will show an exponential decay inside 
the barrier. In general, the wavefunction ψ(x,t) on the other side of the barrier will not be exactly zero, so there will be a finite 
probability that the particle will tunnel through the barrier and emerge on the other side. Importantly, the energy of the particle 
E0 is the same on both sides of the barrier, what changes is the quantum amplitude of the wave.
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Thirdly, the systematic release of only a single synaptic 
vesicle upon depolarization of the axon terminal is explained 
with the use of quantum entanglement, a nonlocal physical 
phenomenon that has no analog in classical physics. Beck and 
Eccles reasoned as follows: attribute to each of N vesicles in 
the presynaptic vesicular grid two states, ψ0 and ψ1, where ψ0 
is the state before and ψ1 the state after exocytosis has been 
triggered. Before exocytosis, the wavefunction describing the 
state of all vesicles can be expressed in a product form
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due to the highly nonlocal quantum entangled nature of this 
state, only a single vesicle will be released. Indeed, this will 
be true, no matter how large the pool of N vesicles is.

Fourthly, it is an unfortunate drawback of the original Beck 
and Eccles model, that the pure quantum tunneling mechanism 
triggering exocytosis release is insensitive to temperature 
variation (32-35). This feature allows putting the model to 
experimental tests. Suppose that the particle that triggers 
exocytosis is classical. If given a sufficient push from thermal 
fluctuations, the classical particle can actually jump over the 
potential barrier according to the Arrhenius’ law for chemical 
reactions. If, in fact, the triggering of exocytosis is due to pure 
quantum tunneling, the probability of neurotransmitter release 
will be independent of temperature, and will only depend on 
the energies and the barrier characteristics involved. Since the 
temperature enters in the formula describing the Arrhenius’ 
law, but not in the formula for calculation of probability 
for pure quantum tunneling, experiments can directly show 
whether the exocytosis trigger is classical or is quantum. We 
note that to this extent, experiments have been performed – the 
probability for exocytosis is indeed sensitive to temperature 
variations (36), thus bringing the original Beck and Eccles 
model into question.

VIBRATIONALLY ASSISTED TUNNELING IN SNARE ZIPPING

In 2002, the framework and ideas of the Beck and Eccles model 
were recast into a new refined model based on the detailed 
molecular data for the zipping of SNARE proteins (soluble 
NSF attachment protein receptor; NSF, N-ethylmaleimide 
sensitive fusion proteins) in exocytosis (37, 38). With the 
progress made in molecular biology, it became clear that Ca2+ 
ions do not simply cause a swelling of the synaptic vesicles up 
to the point that they merge with the presynaptic membrane. 
Instead, a complex protein machinery is at place to precisely 
control the fusion process (39).

The synaptic vesicles are docked at the presynaptic plasma 
membrane through a set of proteins that are anchored in 
the opposing membranes (40, 41). The SNARE complex 
composed of the proteins synaptobrevin, syntaxin, and 
SNAP-25 participates in both docking the synaptic vesicles 
(Fig. 3A) and sustaining the fusion pore (Fig. 3B). In 
neurons, the fusion pore traverses the plasma membrane as a 
barrel formed by 5-8 copies of the transmembrane segment 
of syntaxin, arranged in parallel to form a complete circle 
(42, 43). Zipping of a single SNARE complex, however, is 
sufficient to trigger the membrane fusion (44).

The three SNARE proteins synaptobrevin, syntaxin and 
SNAP-25 zip together to form a four-α-helix bundle whose 
twisting applies a traction force on the opposing phospholipid 
bilayers of the synaptic vesicle and the plasma membrane until 
they merge with each other (39, 45, 46). The Ca2+ dependence 
of exocytosis is due to synaptotagmin, a protein acting as 
a Ca2+-sensitive clamp of the SNARE complex (47-49). In 
the absence of Ca2+, synaptotagmin constrains the SNARE 
complex into a hemi-zipped conformation. Under Ca2+ entry, 
synaptotagmin detaches from the SNARE complex allowing 
full SNARE zipping to proceed (50). The three SNARE 
proteins synaptobrevin, syntaxin and SNAP-25 form the 
minimal machinery that is sufficient to complete the fusion of 
liposomes in vitro at a physiological temperature of 37 °C. The 
SNARE proteins are also able to assemble and tether different 
liposomes together at a lower temperature of 4 °C, however 
the fusion of liposomes does not occur (36).

Motivated by the molecular structure of the four-α-helix 
bundle of SNARE proteins, we have modeled the SNARE 
zipping using a quantum quasiparticle, the so-called Davydov 
soliton, propagating along the hydrogen bonds of the protein 
α-helices of the SNARE complex (51, 52). The existence of 
such quantum quasiparticles in α-helical proteins was first 
predicted by the Soviet and Ukrainian physicist Alexander 
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Davydov, who used them to explain the mechanism of muscle 
contraction due to conformational changes in the proteins 
actin and myosin (53-57). Davydov’s model, or a suitable 
modification of it, is sufficiently robust for it to be applied to 
studying the function of other helical proteins as well (58-61). 
Our calculations have shown that the mass of the Davydov 
soliton is approximately 5% of the hydrogen mass, which is 
much smaller than the 6 hydrogen masses calculated by Beck 
and Eccles. Due to its small mass, the Davydov soliton is 
capable of tunneling through potential barriers up to 1-2 nm 
thick. Such distances correspond well with the conformational 
changes in the SNARE complex that are needed for fusion, 
as revealed by a recent computational study (46). We leave 
open the possibility that eventually a hybrid model of both 
the Davydov soliton and Fröhlich polaron, could be adopted 
to that same extent (62, 63).

Probably the most important feature of our model, however, 
is its temperature dependence (52). Quantum tunneling 
of particles such as electrons whose mass is very small, 

approximately 0.05% of the hydrogen mass, occurs over long 
distances up to 4 nm, and the calculated probabilities for the 
tunneling process do not depend on the temperature. For heavier 
particles, such as protons (hydrogen nuclei), the tunneling 
distances are typically less than 1 nm, and thermal oscillation of 
the potential barrier could then actually increase the probability 
of tunneling. This phenomenon, called vibrationally assisted 
tunneling, has been experimentally proven for the action of a 
number of enzymes with dehydrogenase activity (64-67). Due 
to the intermediate mass of the Davydov soliton, it combines 
important features from the two limiting cases: on one side the 
tunneling distance is relatively long, up to 1-2 nm, allowing 
for important conformational changes to occur, and on another 
side, the tunneling process could be vibrationally assisted by 
the ambient thermal fluctuations.

The vibrationally assisted tunneling in exocytosis could 
be experimentally tested using the so called kinetic isotope 
effect, similarly to the studies performed with dehydrogenase 
enzymes (67). The idea is to replace some of the hydrogen 

Figure 3. SNARE zipping in neurotransmitter release. (A) Synaptic vesicle docking at the active zone through the hemi-zipped 
SNARE complex. The docking interaction between the SNAREs leads to a close proximity of the synaptic vesicle and the 
membrane. The fusion pore is to be opened between the transmembrane domains of 5-8 syntaxin molecules. (B) Full zipping of 
the core SNARE complex leads to the formation of a four-α-helix bundle as a result of synaptobrevin fitting into syntaxin/SNAP-
25 groove. SNARE zipping leads either to transient opening and closure of the fusion pore, which is known as kiss-and-run mode 
of neurotransmitter release, or to complete vesicle fusion with the presynaptic membrane. In both cases, opening of the fusion 
pore leads to release of neurotransmitter into the synaptic cleft. The released neurotransmitter molecules bind to ligand-gated 
receptors and electrically excite or inhibit the postsynaptic neuron.
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atoms in the SNARE four-α-helix bundle with the heavier 
hydrogen isotope, deuterium. Because quantum tunneling is 
strongly dependent on the particle mass that enters into the 
Schrödinger equation, such an isotope replacement would have 
detrimental effect on the propagation of the Davydov soliton 
and thus should effectively inhibit exocytosis. In contrast, 
if the SNARE zipping would be just a classical process, the 
isotope replacement would not have any effect on exocytosis 
because the chemical properties of the common hydrogen 
isotope, protium, is identical with the chemical properties of 
the heavier hydrogen isotope, deuterium. Such an experimental 
test, although quite challenging, we would consider as within 
the capabilities of present-day biochemistry.

DISCUSSION

Quantum mechanics provides a unique opportunity for the 
construction of mind-brain interaction models without violation 
of the physical laws (19, 51, 68). Because quantum effects are 
most pronounced at the nanoscale, it is natural to expect that 
the putative models should be implemented at the molecular 
level inside neurons. Remarkably, this line of reasoning was 
championed by Sir John Eccles in the 1980s at a time when 
molecular neuroscience was still in stages of development 
(30). Later in his life, Sir John Eccles teamed with the quantum 
physicist Friedrich Beck to produce a detailed model of mind-
brain interaction that occurs at the sites of neurotransmitter 
release in the brain (31, 32). Despite the theoretical success 
in explaining the causal efficacy of consciousness through 
momentarily increase in the probability of synaptic release, 
or the unity of consciousness through nonlocal quantum 
entanglements between synaptic vesicles, the original model 
of Beck and Eccles was found to be empirically inadequate 
due to its lack of temperature dependence. This latter finding 
has led to serious questions not only concerning the model, 
but also the very idea that brain function could be amenable to 
quantum mechanical principles. Subsequently, our own work 
demonstrated that the problems in the Beck and Eccles model 
are not of a fundamental character (51, 52), and indeed are 
repairable if one combines: molecular data for the structure 
and function of synaptic SNARE proteins, Davydov’s theory of 
quantum solitons in protein α-helices, and recent experimental 
evidence that certain class of enzymes utilizes vibrationally 
assisted tunneling to catalyze biological reactions. In particular, 
we have shown that the vibrationally assisted tunneling of a 
quantum Davydov soliton could be instrumental in zipping 
the SNARE four-α-helix bundle in exocytosis (52). Among 

other predictions, such as temperature dependence and kinetic 
isotope effect, our model also provides an unexpected link 
with general anesthesia – the action of volatile anesthetics 
seems to be mediated through binding to the SNARE complex 
(69, 70), and, moreover, the only known mutation that confers 
resistance to volatile anesthetics is in the syntaxin gene and 
leads to expression of a truncated form of syntaxin (71). The 
unravelling of such a deep connection between consciousness, 
anesthesia, quantum mechanics and SNARE function might be 
an indication that finally we are on the right path that will lead 
us to a comprehensive physical theory of consciousness (72).

CONFLICT OF INTEREST

The authors declare no conflict of interest.

REFERENCES

1. 	 Ramón y Cajal S. Textura del sistema nervioso del hombre 
y de los vertebrados: estudios sobre el plan estructural 
y composición histológica de los centros nerviosos 
adicionados de consideraciones fisiológicas fundadas 
en los nuevos descubrimientos. Madrid: Moya, 1904.  
https://archive.org/details/b21270855

2. 	 Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, 
Hudspeth AJ. Principles of Neural Science, 5th edition. 
New York: McGraw-Hill Professional, 2012.  

3. 	 Garman RH. Histology of the central nervous system. 
Toxicol Pathol 2011; 39: 22-35.

	 http://dx.doi.org/10.1177/0192623310389621 
4. 	 Byrne JH, Roberts JL. From Molecules to Networks: An 

Introduction to Cellular and Molecular Neuroscience. San 
Diego: Academic Press, 2004.  

5. 	 Kateb B, Heiss JD. The Textbook of Nanoneuroscience 
and Nanoneurosurgery. Boca Raton: CRC Press, 2013.  
http://dx.doi.org/10.1201/b15274 

6. 	 Gurney K. An Introduction to Neural Networks. London: 
Routledge, 1999.  

7. 	 Georgiev D. The nervous principle: active versus passive 
electric processes in neurons. Electroneurobiología 2004; 
12: 169-230. 

8. 	 Georgiev D. Monte Carlo simulation of quantum Zeno 
effect in the brain. Int J Modern Physics B 2015; 29: 
1550039. http://dx.doi.org/10.1142/S0217979215500393 
http://arxiv.org/abs/1412.4741

9. 	 Leuchtag HR. Voltage-Sensitive Ion Channels: Biophysics 
of Molecular Excitability. Berlin: Springer, 2008.  

	 http://dx.doi.org/10.1007/978-1-4020-5525-6 



22

Biomed Rev 25, 2014

Georgiev and Glazebrook  

10.	 Feng J. Computational Neuroscience: A Comprehensive 
Approach. Mathematical & Computational Biology, Boca 
Raton: Chapman & Hall/CRC, 2004.  

11.	 Mallot HA. Computational Neuroscience. A First Course. 
Springer Series in Bio-/Neuroinformatics, vol.2, Berlin: 
Springer, 2013. http://dx.doi.org/10.1007/978-3-319-00861-5 

12.	 Trappenberg T. Fundamentals of Computational 
Neuroscience. Oxford: Oxford University Press, 2002.

13.	 Chalmers DJ. Facing up to the problem of consciousness. 
J Consc Stud 1995; 2: 200-219. 

14.	 Chalmers DJ. The puzzle of conscious experience. Sci Am 
2002; 12: 90-100.

15.	 Nagel T. What is it like to be a bat? Philosoph Rev 1974; 
83: 435-450. http://www.jstor.org/stable/2183914

16.	 Georgiev D. A linkage of mind and brain: Sir John Eccles 
and modern dualistic interactionism. Biomed Rev 2011; 
22: 81-84. http://dx.doi.org/10.14748/bmr.v22.38 

17.	 Nagel T. Mind and Cosmos: Why the Materialist Neo-
Darwinian Conception of Nature Is Almost Certainly 
False. Oxford: Oxford University Press, 2012.  

18.	 Eger II EI, Saidman LJ, Westhorpe RN. The Wondrous 
Story of Anesthesia. Berlin: Springer, 2014.

	 http://dx.doi.org/10.1007/978-1-4614-8441-7 
19.	 Georgiev D. Quantum no-go theorems and consciousness. 

Axiomathes 2013; 23: 683-695. 
	 http://dx.doi.org/10.1007/s10516-012-9204-1 
20.	 Thalberg I. A novel approach to mind-brain identity. 

Philosoph Stud 1978; 33: 255-272. 
	 http://www.jstor.org/stable/4319209
21.	 Yu S, Yang H, Nakahara H, Santos GS, Nikolić D, Plenz 

D. Higher-order interactions characterized in cortical 
activity. J Neurosci 2011; 31: 17514-17526. 

	 http://dx.doi.org/10.1523/JNEUROSCI.3127-11.2011 
22.	 James W. Are we automata? Mind 1879; 4: 1-22. 
23.	 Susskind L, Hrabovsky G. The Theoretical Minimum: 

What You Need to Know to Start Doing Physics. New 
York: Basic Books, 2013.  

24.	 James W. The Principles of Psychology. Volume 1. New 
York: Henry Holt and Company, 1890.  

	 http://archive.org/details/principlesofpsyc001jame
25.	 James W. The Principles of Psychology. Volume 2. New 

York: Henry Holt and Company, 1890.  
	 http://archive.org/details/principlesofpsyc002jame
26.	 Koch C, Hepp K. Quantum mechanics in the brain. Nature 

2006; 440: 611-612. 
27.	 Mormann F, Koch C. Neural correlates of consciousness. 

Scholarpedia 2007; 2: 1740.

	 http://dx.doi.org/10.4249/scholarpedia.1740 
28.	 Yu S, Nikolić D. Quantum mechanics needs no 

consciousness. Annalen der Physik 2011; 523: 931-938. 
http://dx.doi.org/10.1002/andp.201100078

29.	 Bennett MR, Hacker PMS. Philosophical Foundations of 
Neuroscience. London: Wiley-Blackwell, 2003.  

30.	 Eccles JC. Do mental events cause neural events 
analogously to the probability fields of quantum 
mechanics? Proc Royal Soc London B 1986; 227: 411-428. 
http://dx.doi.org/10.1098/rspb.1986.0031 

31.	 Beck F, Eccles JC. Quantum aspects of brain activity and 
the role of consciousness. Proc Natl Acad Sci USA 1992; 
89: 11357-11361.

32.	 Beck F, Eccles JC. Quantum processes in the brain: A 
scientific basis of consciousness. Cogn Stud Bull Jpn Cogn 
Sci Soc 1998; 5: 95-109. 

	 http://dx.doi.org/10.11225/jcss.5.2_95 
33.	 Beck F. Can quantum processes control synaptic emission? 

Int J Neural Syst 1996; 7: 343-353. 
	 http://dx.doi.org/10.1142/S0129065796000300 
34.	 Beck F. Synaptic quantum tunnelling in brain activity. 

NeuroQuantology 2008; 6: 140-151. 
	 http://dx.doi.org/10.14704/nq.2008.6.2.168 
35.	 Beck F. My Odyssey with Sir John Eccles. NeuroQuantology 

2008; 6: 161-163. 
	 http://dx.doi.org/10.14704/nq.2008.6.2.170 
36.	 Weber T, Zemelman BV, McNew JA, Westermann 

B, Gmachl M, Parlati F, et al. SNAREpins: minimal 
machinery for membrane fusion. Cell 1998; 92: 759-772. 
http://dx.doi.org/10.1016/S0092-8674(00)81404-X

37.	 Georgiev D. The β-neurexin-neuroligin link is essential 
for quantum brain dynamics. 2002: 

	 http://arxiv.org/abs/quant-ph/0207093
38.	 Georgiev D. The causal consciousness: beta-neurexin 

promotes neuromediator release via vibrational 
multidimensional tunneling. 2002: 

	 http://arxiv.org/abs/quant-ph/0210102
39.	 Rizo J, Rosenmund C. Synaptic vesicle fusion. Nat Struct 

Mol Biol 2008; 15: 665-674.
	  http://dx.doi.org/10.1038/nsmb.1450 
40.	 Chapman ER, An S, Barton N, Jahn R. SNAP-25, a 

t-SNARE which binds to both syntaxin and synaptobrevin 
via domains that may form coiled coils. J Biol Chem 1994; 
269: 27427-27432. 

41.	 Hu K, Davletov B. SNAREs and control of synaptic 
release probabilities. FASEB J 2003; 17: 130-135. 

	 http://dx.doi.org/10.1096/fj.02-0595hyp 



23

Biomed Rev 25, 2014

SNARE zipping model of exocytosis

42.	 Han X, Wang C-T, Bai J, Chapman ER, Jackson MB. 
Transmembrane segments of syntaxin line the fusion pore 
of Ca2+-triggered exocytosis. Science 2004; 304: 289-292. 

43.	 Jackson MB, Chapman ER. The fusion pores of Ca2+-
triggered exocytosis. Nat Struct Mol Biol 2008; 15: 684-
689. http://dx.doi.org/10.1038/nsmb.1449 

44.	 van den Bogaart G, Holt MG, Bunt G, Riedel D, Wouters 
FS, Jahn R. One SNARE complex is sufficient for 
membrane fusion. Nat Struct Mol Biol 2010; 17: 358-364. 
http://dx.doi.org/10.1038/nsmb.1748

45.	 Jahn R, Scheller RH. SNAREs - engines for membrane 
fusion. Nat Rev Mol Cell Biol 2006; 7: 631-643. 

	 http://dx.doi.org/10.1038/nrm2002 
46.	 Risselada HJ, Grubmüller H. How SNARE molecules 

mediate membrane fusion: recent insights from molecular 
simulations. Curr Opin Struct Biol 2012; 22: 187-196.

	 http://dx.doi.org/10.1016/j.sbi.2012.01.007 
47.	 Chapman ER. Synaptotagmin: a Ca2+ sensor that triggers 

exocytosis? Nat Rev Mol Cell Biol 2002; 3: 1-11. 
	 http://dx.doi.org/10.1038/nrm855 
48.	 Chicka MC, Hui E, Liu H, Chapman ER. Synaptotagmin 

arrests the SNARE complex before triggering fast, 
efficient membrane fusion in response to Ca2+. Nat Struct 
Mol Biol 2008; 15: 827-835. 

	 http://dx.doi.org/10.1038/nsmb.1463 
49.	 Südhof TC. Synaptotagmins: why so many? J Biol Chem 

2002; 277: 7629-7632. 
50.	 Leveque C, Boudier J-A, Takahashi M, Seagar M. Calcium-

dependent dissociation of synaptotagmin from synaptic 
SNARE complexes. J Neurochem 2000; 74: 367-374. 
http://dx.doi.org/10.1046/j.1471-4159.2000.0740367.x 

51.	 Georgiev DD, Glazebrook JF. Subneuronal processing of 
information by solitary waves and stochastic processes. 
In: Nano and Molecular Electronics Handbook. Nano and 
Microengineering Series, Lyshevski SE (editor), Boca 
Raton: CRC Press, 2007, pp.17-11-17-41. 

	 http://www.crcnetbase.com/doi/abs/10.1201/9781420008142.ch17 
52.	 Georgiev D, Glazebrook JF. Quasiparticle tunneling in 

neurotransmitter release. In: Handbook of Nanoscience, 
Engineering, and Technology, Third Edition. Electrical 
Engineering Handbook, Goddard III WA, Brenner D, 
Lyshevski SE, Iafrate GJ (editors), CRC Press, 2012, 
pp.983-1016. http://dx.doi.org/10.1201/b11930-37 

53.	 Davydov AS. The theory of contraction of proteins under 
their excitation. J Theor Biol 1973; 38: 559-569. 

	 http://dx.doi.org/10.1016/0022-5193(73)90256-7 

54.	 Davydov AS. Solitons and energy transfer along protein 
molecules. J Theor Biol 1977; 66: 379-387. 

	 http://dx.doi.org/10.1016/0022-5193(77)90178-3 
55.	 Davydov AS. The role of solitons in the energy and 

electron transfer in one-dimensional molecular systems. 
Physica D 1981; 3: 1-22. 

	 http://dx.doi.org/10.1016/0167-2789(81)90116-0 
56.	 Davydov AS. The lifetime of molecular (Davydov’s) 

solitons. J Physique I 1991; 1: 1649-1660. 
	 http://dx.doi.org/10.1051/jp1:1991232 
57.	 Davydov AS. The lifetime of molecular (Davydov) 

solitons. J Biol Phys 1991; 18: 111-125. 
	 http://dx.doi.org/10.1007/BF00395058 
58. 	Förner W. Davydov solitons in proteins. Int J Quant Chem 

1997; 64: 351-377. 
	 http://dx.doi.org/10.1002/(SICI)1097-461X(1997)64:3<351::AID-QUA7>3.0.CO;2-V 
59.	 Förner W. Davydov soliton dynamics in proteins: I. Initial 

states and exactly solvable special cases. J Mol Model 
1996; 2: 70-102.

	 http://dx.doi.org/10.1007/s0089460020070 
60.	 Förner W. Davydov soliton dynamics in proteins: II. The 

general case. J Mol Model 1996; 2: 103-135. 
	 http://dx.doi.org/10.1007/s0089460020103 
61.	 Förner W. Davydov soliton dynamics in proteins: III. 

Applications and calculation of vibrational spectra. J Mol 
Model 1997; 3: 78-116. 

	 http://dx.doi.org/10.1007/s0089470030078 
62.	 Lawrence AF, McDaniel JC, Chang DB, Birge RR. The 

nature of phonons and solitary waves in α-helical proteins. 
Biophys J 1987; 51: 785-793. 

	 http://dx.doi.org/10.1016/S0006-3495(87)83405-7 
63.	 Ristovski LM, Nestorović N, Davidović GS. The unified 

theory of Davydov’s and Fröhlich’s models. Zeitschrift 
für Physik B 1992; 88: 145-157. 

	 http://dx.doi.org/10.1007/BF01323566 
64.	 Basran J, Sutcliffe MJ, Scrutton NS. Enzymatic H-transfer 

requires vibration driven extreme tunneling. Biochemistry 
1999; 38: 3218-3222. http://dx.doi.org/10.1021/bi982719d 

65.	 Scrutton NS, Basran J, Sutcliffe MJ. New insights into 
enzyme catalysis. Ground state tunnelling driven by 
protein dynamics. Eur J Biochem 1999; 264: 666-671. 
http://dx.doi.org/10.1046/j.1432-1327.1999.00645.x 

66.	 Sutcliffe MJ, Scrutton NS. Enzyme catalysis: over-the-
barrier or through-the-barrier? Trends Biochem Sci 2000; 
25: 405-408. 

	 http://dx.doi.org/10.1016/S0968-0004(00)01642-X 



24

Biomed Rev 25, 2014

Georgiev and Glazebrook  

67.	 Basran J, Patel S, Sutcliffe MJ, Scrutton NS. Importance 
of barrier shape in enzyme-catalyzed reactions. 
Vibrationally assisted hydrogen tunneling in tryptophan 
tryptophylquinone-dependent amine dehydrogenases. J 
Biol Chem 2001; 276: 6234-6242. 

	 http://dx.doi.org/10.1074/jbc.M008141200 
68.	 Georgiev DD, Glazebrook JF. Dissipationless waves for 

information transfer in neurobiology - some implications. 
Informatica (Slovenia) 2006; 30: 221-232. 

69.	 Nagele P, Mendel JB, Placzek William J, Scott Barbara A, 
d’Avignon DA, Crowder CM. Volatile anesthetics bind 
rat synaptic SNARE proteins. Anesthesiology 2005; 103: 
768-778. 

70.	 Johansson JS, Scharf D, Davies LA, Reddy KS, Eckenhoff 
RG. A designed four-α-helix bundle that binds the volatile 
general anesthetic halothane with high affinity. Biophys J 
2000; 78: 982-993. 

	 http://dx.doi.org/10.1016/S0006-3495(00)76656-2 
71.	 van Swinderen B, Saifee O, Shebester L, Roberson R, 

Nonet ML, Crowder CM. A neomorphic syntaxin mutation 
blocks volatile-anesthetic action in Caenorhabditis 
elegans. Proc Natl Acad Sci USA 1999; 96: 2479-2484. 

72. 	Georgiev D, Glazebrook JF. SNARE proteins as 
molecular masters of interneuronal communication. 
Biomed Rev 2010; 21: 17-23. 

	 http://dx.doi.org/10.14748/bmr.v21.43 



BMR
Biomedical Reviews

Volume 25, 2014

   An International Journal of Cell Biology of Disease

Official Journal of the Bulgarian Society for Cell Biology and the Medical University, Varna, Bulgaria

Biom
edical Review

s     Volum
e 18, 2007

Adipopharm
acology of Disease

Synaptic
vesicle

Synaptobrevin

Syntaxin

SNAP-25

A B

Neurotransmitter



C o n t e n t s
BMR
Biomedica l  Rev iews

 www.bgscb.org/BMR.htm http:/press.mu-varna.bg/ojs/

Front cover: SNARE zipping in neurotransmitter release.(Left) Synaptic vesicle docking at the active zone through 
the hemi-zipped SNARE complex. The docking interaction between the SNAREs leads to a close proximity of the 
synaptic vesicle and the membrane. The fusion pore is to be opened between the transmembrane domains of 5-8 
syntaxin molecules. (Right) Full zipping of the core SNARE complex leads to the formation of a four-α-helix bundle 
as a result of synaptobrevin fitting into syntaxin/SNAP-25 groove. SNARE zipping leads either to transient opening 
and closure of the fusion pore, which is known as kiss-and-run mode of neurotransmitter release, or to complete 
vesicle fusion with the presynaptic membrane. In both cases, opening of the fusion pore leads to release of neu-
rotransmitter into the synaptic cleft. The released neurotransmitter molecules bind to ligand-gated receptors and 
electrically excite or inhibit the postsynaptic neuron. From Georgiev and Glazebrook’s review, pp 15-24.

III	 Editor's foreword 

IV	 BMR News

		  R e v i e w s
1	 Aspects of the endothelin system in colorectal cancer 

Mohamed Refaat Mahdi, Raouf Fekry Bedeer, Abd-El Hakiem Zohry Gabr, Huda Mohamed Eltahry, 
and Martin R. Berger (Germany, Egypt)

15	 Quantum interactive dualism: From Beck and Eccles tunneling model of exocytosis to molecular biol-
ogy of SNARE zipping 
Danko D. Georgiev and James F. Glazebrook (USA)

25	 Nanopharmaceuticals: Innovative theranostics for the neurological disorders 
Parichehr Hassanzadeh (Iran)

35	 Lactose intolerance: genetics of lactase polymorphisms, diagnosis and novel therapy 
Erica Sequeira, Ginpreet Kaur, Meena Chintamaneni, and Harpal S. Buttar (India, Canada)

45	 Celiac disease: Role of genetics and immunity and update on novel strategies for treatment 
Erica Sequeira, Ginpreet Kaur, and Harpal S. Buttar (India, Canada)

59	 New approach in the treatment of ophthalmic neovascular disorders: using fusion protein aflibercept  
Kaloyan D. Georgiev, Dobrin D. Georgiev, and Dobrin S. Georgiev (Bulgaria)

67	 Rab7a: the master regulator of vesicular trafficking  
Soumik BasuRay (USA)

83	 Role of aberrant glycosylation in ovarian cancer dissemination  
Razan Sheta and Dimcho Bachvarov (Canada)

		  D a n c e  R o u n d
93	 Autism spectrum disorders: neurotrophins enter the dance  

Rouzha Pancheva and Miglena Georgieva (Bulgaria)

101	 Instructions to authors


