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Summary. Although the biological body consists of many individual parts or
agents, our experience is holistic. We suggest that collective response behavior is
a key feature in intelligence. A nonlinear Schrödinger wave equation is used to
model collective response behavior. It is shown that such a paradigm can naturally
make a model more intelligent. This aspect has been demonstrated through an ap-
plication – intelligent filtering – where complex signals are denoised without any
a priori knowledge about either signal or noise. Such a paradigm has also helped
us to model eye-tracking behavior. Experimental observations such as saccadic and
smooth-pursuit eye-movement behavior have been successfully predicted by this
model.

9.1 Intelligence – Still Ill-Understood

Natural intelligence is what determines a normal thought process of a human.
Artificial intelligence is a property of a machine that gives it the ability to
mimic the human thought process. The foundational framework for intelli-
gent computing lies in our proper understanding of mental processes. Though
the term intelligence is still not completely defined, research in artificial in-
telligence has focused on five components of intelligence [35], as shown in
Fig. 9.1. An intelligent system should have the abilities to understand, per-
ceive, reason, solve problems and, moreover, learn from past experiences.
The understanding of cognitive processes consists of the formulation and so-
lution of three fundamental problems in the design of intelligent machines
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Fig. 9.1. What is intelligence? Alan Turing [35]
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that “intelligently” observe, predict and interact with their surroundings.
These problems are known as (i) the system-identification problem, (ii) the
stochastic-filtering problem, and (iii) the adaptive-control problem.

Here we address the issue of the intelligent stochastic-filtering problem.
The main question therefore is: Can we design a method that allows us to
estimate any signal embedded in noise without assuming any knowledge about
the signal or noise behavior?

Information processing in the brain is mediated by the dynamics of large,
highly interconnected neuronal populations. The activity patterns exhibited
by the brain are extremely rich; they include stochastic weakly correlated
local firing, synchronized oscillations and bursts, and propagating waves of
activity. Perception, emotion, etc., are supposed to be emergent properties of
such complex nonlinear neural circuits.

Different architectures of interconnected neurons, such as feedforward and
recurrent neural networks, have been explored to study global brain behav-
ior [14, 1, 7, 8, 2]. Instead of considering one of these conventional neural
architectures, an alternative neural architecture is proposed here for neural
computing, namely, a recurrent quantum neural network (RQNN). This term
entails that the individual neuronal response does not play a significant role
when the collective behavior of a neural lattice is observed.

Population dynamics studies of “bird flocks” and “fish schools” [25] show
that the individual dynamics does not play a role in group dynamics. Hence,
ignoring individual neuron dynamics while considering average lattice be-
havior is sometimes a sound methodology. The proposed RQNN is quite dif-
ferent in spirit and objective from the QNN architecture available in the
literature [10, 9, 32], as these QNNs synthesize a neural lattice using individ-
ual neural responses. The collective response model proposed in this chapter
entails that there exists a quantum process that mediates the average be-
havior of a neural lattice. This collective response is described here using
Schrödinger wave equation. We show that the closed-loop RQNN dynamics
exhibits a soliton property. We exploit this property for stochastic filtering.
The signal estimation is shown to be quite accurate. Moreover, filtering, us-
ing this approach, is done without any a priori knowledge of either signal or
noise.

9.2 Intelligent Filtering – Denoising of Complex Signals

According to Bucy [13], every solution to a stochastic filtering problem in-
volves the computation of the time-varying probability density function (pdf)
on the state space of the observed system. Dawes [16, 17] proposed a novel
model – a parametric avalanche stochastic filter – using this very concept. His
work is the main impetus for the present work, which we hope will motivate
others to explore this new approach.
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For stochastic-filtering applications, we make the hypothesis that the av-
erage behavior of a neural lattice that estimates a stochastic signal is a prob-
ability density function that is mediated by a quantum process. We use the
Schrödinger wave equation to track this pdf function since it is a known fact
that the square of the modulus of the ψ function, the solution of this wave
function, is also a pdf function. It will be explained in detail later in this
chapter that the Schrödinger wave equation becomes nonlinear when its po-
tential field is excited by a feedback signal that is a function of ψ, the state
of the quantum process. It is known [11] that the nonlinear Schrödinger wave
equation exhibits a soliton property, which is necessary to track nondispers-
ing wave packets, representative of the time-varying pdf. This is a generic
identity of a stochastic signal under observation.

The proposed model is an improvement over the model proposed by
Dawes [17] in two respects: (i) the movement of wave packets as solitons
and (ii) nonlinearly modulated spatial potential field. We also noted that it is
very difficult to heuristically tune the parameters of the nonlinear Schrödinger
wave equation while tracking the probability density function. This led us to
make use of the evolutionary computation approach based on the univari-
ate marginal distribution algorithm to identify these parameters in known
cases of signals embedded in noise. In a recent work [6], we have shown
that both Gaussian and non-Gaussian pdfs are learnt by the proposed re-
current quantum neural network (RQNN) and the signal estimation is quite
accurate in the presence of a noise level up to 6 dB. The results were also
compared with a classical filtering algorithm. In this work, we consider the
stochastic-filtering of nonstationary signals including the speech signals. The
speech-enhancement capability of the proposed RQNN is also established
in real time. Thus this chapter provides a complete framework for learning
a stochastic signal in terms of its probability density function.

The other important feature of our proposed model is the novelty of its
application to signal processing. The popular Kalman filter assumes that the
dynamic process is linear with Gaussian observation noise and the algorithm
is too computationally intensive for a system of practical complexity [27].
The extended version, popularly known as EKF, makes many approxima-
tions to include nonlinear processes as well. However, in practical situations
the stochastic noise can not be limited to a Gaussian or even a unimodal
distribution. In contrast, the proposed RQNN estimates a signal without any
a priori assumption on the shape and nature of the signal and the noise. In
a nutshell, we propose a stochastic-filtering scheme that is a step forward
towards intelligent filtering.

9.2.1 RQNN Architecture used for Stochastic-Filtering

The architecture of the RQNN for filtering a one-dimensional signal embed-
ded in noise is shown in Fig. 9.2. The signal y(t) is the actual signal (ya(t))
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Fig. 9.2. A stochastic filter using RQNN with linear modulation

embedded in noise (µ(t)), i. e. y(t) = ya(t) + µ(t). The signal excites N neu-
rons spatially located along the x-axis after being preprocessed by synapses.
In the model the synapses are represented by time-varying synaptic weights
K(x, t). The unified dynamics of the one-dimensional neural lattice consisting
of N neurons is described by the Schrödinger wave equation given as

i�
∂ψ(x, t)

∂t
= − �

2

2m
∇2ψ(x, t) + ζ(U(x, t) + G(| ψ |2))ψ(x, t) , (9.1)

where i,�, ψ(x, t) and ∇ carry their usual meaning in the context of Schrö-
dinger wave equation. The ψ(x, t) function represents the solution of (9.1).
The potential field of the Schrödinger wave equation given in (9.1) consists
of two terms:

U(x, t) = −K(x, t)y(t) , (9.2)

G(| ψ |2) = K(x, t)
∫

xf(x, t)dx , (9.3)

where
f(x, t) =| ψ(x, t) |2 . (9.4)

Since the potential field term in (9.1) is a function of ψ(x, t), the Schrödinger
wave equation that describes the stochastic filter is nonlinear. In contrast to
artificial neural networks studied in the literature, in our model the neural
lattice consisting of N neurons is described by the state ψ(x, t) which is the
solution of (9.1). Simultaneously, the model is recurrent as the dynamics
consists of a feedback term G(.). The information about the signal is thus
transferred to the potential field of the Schrödinger wave equation and the
dynamics is evolved accordingly. Here we have used a linear neural circuit to
set up the potential field where K(x, t)s are the associated linear synaptic
weights. The signal is then estimated using a maximum-likelihood estimator
as

ŷ(t) =
∫

xf(x, t)dx. (9.5)
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When the estimate ŷ(t) is the actual signal, then the signal that generates
the potential field for the Schrödinger wave equation, ν̂(t), is simply the noise
that is embedded in the signal. If the statistical mean of the noise is zero,
then this error-correcting signal ν̂(t) has little effect on the movement of the
wave packet. Precisely, it is the actual signal content in the input y(t) that
moves the wave packet along the desired direction that, in effect, achieves the
goal of the stochastic-filtering. It is expected that the synaptic weights evolve
in such a manner so as to drive the ψ function to carry the exact information
of the pdf of the observed stochastic variable y(t).

Learning and Estimation

The nonlinear Schrödinger wave equation given by (9.1) exhibits a soliton
property, i. e. the square of | ψ(x, t) | is a wave packet that moves like a parti-
cle. The importance of this property is as follows. Let the stochastic variable
y(t) be described by a Gaussian probability density function f(x, t) with
mean κ and standard deviation σ. Let the initial state of (9.1) correspond to
zero mean Gaussian probability density function f ′(x, t) with standard devi-
ation σ′. As the dynamics evolves with online update of the synaptic weights
K(x, t), the probability density function f ′(x, t) should ideally move toward
the pdf, f(x) of the signal y(t). Thus the filtering problem in this new frame-
work can be seen as the ability of the nonlinear Schrödinger wave equation to
produce a wave packet solution that glides along with the time-varying pdf
corresponding to the signal y(t).

The synaptic weights K(x, t), which is a N × 1-dimensional vector, is
updated using the Hebbian learning algorithm

∂K(x, t)
∂t

= βν(t)f(x, t) , (9.6)

where ν(t) = y(t) − ŷ(t). ŷ(t) is the filtered estimate of the actual sig-
nal ya(t). We compute the filtered estimate according to (9.5). We will
show later that the wave packet moves in the required direction in our new
model.

9.2.2 Integration of the Schrödinger Wave Equation

The nonlinear Schrödinger wave equation is – from the mathematical point
of view – a partial differential equation with two variables: x and t. In an
abstract sense, receptive fields of N neurons span the entire distance along
the x-axis. (9.1) is converted into the finite difference form by dividing the
x-axis into N mesh points so that x and t are represented as follows:

xj = j�x tn = n�t , (9.7)
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where j varies from −N/2 to +N/2. The finite-difference form of (9.1) is
expressed as

i
ψ(x, t + �t) − ψ(x, t)

�t
=

− ψ(x + �x, t) − 2ψ(x, t) + ψ(x −�x, t)
2m�x2 + V (x)ψ(x, t) , (9.8)

where V (x) = ζ(U(x, t) + G(| ψ |2)). Here, we have assumed that � = 1.
For convenience, we represent ψ(xj , tn + �t) as ψj

n+1, ψ(xj , tn) as ψj
n and

ψ(xj −�x, tn) as ψj−1
n. With these representations, (9.8) reads

ψj
n+1 = ψj

n + i�t
ψj+1

n − 2ψj
n + ψj−1

n

2m�x2 − i�tVjψj
n . (9.9)

Rewriting this equation in a matrix form one gets

Fn+1 = Fn − i�tH ′Fn , (9.10)

where the Hamiltonian H ′ is defined as

H ′ = − �
2

2m

d2

dx2
+ V (x) . (9.11)

Subsequently,
Fn+1 = UFn where U = I − i�tH ′ . (9.12)

Since it is required that the norm of F is F ∗F = 1, U must be an orthonormal
operator. Since U in (9.12) does not have such a property, in our simulation
we impose the normalization after every step.

Selection of Parameters

The nonlinear equation (9.1) involves four external parameters: �, m, ζ and
β. The last parameter β is necessary to update the synaptic weight vector
K(x, t). For simplicity, the parameter � is taken as unity and the other three
parameters are tuned accordingly. Looking at the complexity of (9.1), we used
a genetic algorithm (GA) based on the concept of the univariate marginal
distribution algorithm (UMDA) [5, 29] to select near-optimal parameters.
The details of the algorithm and its implementation are as follows:

The univariate marginal distribution algorithm estimates the distribution
of gene frequencies using a mean-field approximation. Each string in the
population is represented by a binary vector x. The algorithm generates new
points according to the following distribution:

p(x, t) =
n∏

i=1

ps
i (xi, t) . (9.13)
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The UMDA algorithm is given as follows:

– Step 1: Set t = 1, Generate N(>> 0) binary strings randomly.
– Step 2: Select M < N strings according to a selection method.
– Step 3: Compute the marginal frequencies ps

i (xi, t) from the selected
strings.

– Step 4: Generate N new points according to the distribution

p(x, t) =
∏n

i=1 ps
i (xi, t) .

– Set t = t + 1. If the termination criteria are not met, go to Step 2.

For infinite populations and proportionate selection, it has been shown [29]
that the average fitness never decreases for the maximization problem (in-
creases for the minimization problem).

In general, GA provided the parameter values where m < 1, β < 1 and
ζ >> 1. The significance of this finding can be understood in the following
manner. Since β was the learning parameter in the Hebbian learning, it is
natural to expect that β < 1. The less than unity value for m makes self-
excitation larger. Similarly, a large value of ζ causes a larger input excitation
since it appears as a multiplicand in the Schrödinger equation.

9.2.3 Simulation Results I

The proposed RQNN has been successfully applied to denoising of various sig-
nals like dc signals, sinusoids, shifted sinusoids, amplitude-modulated sine and
square waves, speech signals, embedded in high Gaussian or non-Gaussian
noise. Some selected results are presented in this section.

Amplitude - Modulated Sine and Square Waves

Amplitude-modulated and frequency-modulated signals are normally used in
coding and transmission of data and appear corrupted at the receiver’s end
by channel noise [23]. For simulation purpose, we have selected the frequency
of the carrier signal to be a sinusoid of frequency 5 Hz, although in reality
they are very high frequency signals. The amplitude was modulated by su-
perimposing a triangular variation of frequency 0.5Hz. Thus the expression
for the composite signal ya(t) is

ya(t) = a(t) · sin(2π5t) ; a(t) =
{

1.5t 0 ≤ t ≤ 1
1.5 (2 − t) 1 ≤ t ≤ 2 ,

(9.14)

where a(t) is periodic with period 0.5Hz. A similar strategy is applied in
generating the amplitude modulated square wave, i. e., the amplitude of a(t)
is kept constant over every single period of the carrier sine wave in (9.14).
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The expression for the actual signal ya(t) in this case is given below:

ya(t) =
{

a(t) 0 ≤ t ≤ 0.1
−a(t) 0.1 ≤ t ≤ 0.2 and a(t) =

{
1.5t 0 ≤ t ≤ 1
1.5 (2 − t) 1 ≤ t ≤ 2 ,

(9.15)
where a(t) is periodic with period 0.5Hz.

The amplitude-modulated sinusoid signal ya(t) in (9.14) was immersed in
Gaussian noise. The variance of the Gaussian noise was set according to the
20 dB and 6dB SNR measurement. The values selected for the parameters of
the Schrödinger wave equation using UMDA are as follows:

β = 0.11 m = 0.015 ζ = 84.31 � = 1.0 . (9.16)

The number of neurons along the x-axis are taken as N = 400. The pa-
rameters for the finite-difference equation used for integration are selected
as

�x = 0.1 �t = 0.001 . (9.17)

The parameter γ is selected as 100. The tracking of the desired signal ya(t)
is shown in Fig. 9.3. It can be observed that the tracking is very smooth
and accurate. Snapshots of wave packets are shown in the same figure cor-
reponding to marker points shown in the left plot. It can be observed that
the pdf does not split, sliding along the x-axis back and forth like a particle.
Next, the amplitude-modulated square wave ya(t) in (9.15) is immersed in
Gaussian noise. The variance of the Gaussian noise was set according to the
20 dB and 6 dB noise power with the instantaneous period amplitude of ya(t)

2.5 3 3.5 4
t

-2

-1

0

1

2

y(
t)

a
b

1

2

-20 -10 0 10 20
x

0

0.01

0.02

0.03

0.04

0.05

0.06

f(
x)

1
2

Fig. 9.3. (left) Tracking of amplitude-modulated sinusoid signal embedded in 20 dB
Gaussian noise: “a” represents the actual signal and “b” represents the tracking by
the RQNN; (right) Snapshots of wave packets corresponding to marker points are
shown in the left plot
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Fig. 9.4. (left) Tracking of amplitude-modulated square wave embedded in 20 dB
Gaussian noise: “a” represents the actual signal and “b” represents the tracking by
the RQNN. (right) Snapshots of wave packets: wave packet “b” at t = 2.1 s, the
wave packet “c” at t = 2.5 s, wave packet “d” at t = 2.9 s and the wave packet “e”
at t = 3.1 s

as reference. The values selected for the parameters of the Schrödinger wave
equation using UMDA are as follows:

β = 0.11 m = 0.015 ζ = 84.31 � = 1.0 . (9.18)

This shows that the parameter γ influences the speed of response of the
RQNN filter. The number of neurons along the x-axis is taken as N = 400.
The parameters for the finite-difference equation used for integration are
selected as

�x = 0.1 �t = 0.001 . (9.19)

The tracking of the desired signal ya(t) and the movement of the wave packets
are shown in Fig. 9.4. It can be observed that the tracking is accurate.

The pdf of the desired signal as estimated by the RQNN clearly exhibits
a soliton property Fig. 9.4. The pdf does not split and slides along the x-axis
like a particle.

Speech Signals

Speech signals are degraded in many ways that limit their effectiveness for
communication. One major source of noise in the speech signal is channel
noise that is a major concern, especially in speech-recognition systems. Since
the RQNN estimates the pdf of the incoming signal at every instant, if the
incoming signal is corrupted by zero-mean noise, then the RQNN must be
able to filter out that noise. Working on this hypothesis, we added zero-
mean Gaussian noise with variance equal to the square of the instantaneous
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amplitude of the speech signal. The peak amplitude of the speech signal
was normalized to 1.0. The original speech signals are recorded spoken digit
utterances taken from the Release 1.0 of the Number Corpus. This corpus is
distributed by the Center of Spoken Language Understanding of the Oregon
Graduate Institute. The speech file names are mentioned in the captions,
along with the respective plots for each of the speech signals.

For tracking the speech signals, the number of neurons along the x-axis
is taken as N = 400. The parameters for the finite-difference equation used
for integration are selected as

�x = 0.1 �t = 0.001 . (9.20)

The values selected for the parameters of the Schrödinger wave equation using
UMDA are as follows:

β = 0.16 m = 0.015 ζ = 27.45 � = 1.0. (9.21)

The parameter γ was selected as 800. The tracking for a particular period of
the speech signals selected from the database are shown in Figs. 9.5 and 9.6.
The snapshots of the wave packet at two time instants are also shown. It is
evident from Figs. 9.5 and 9.6 that the RQNN does track the pdf of the input
signal at every instant. The wave packet does not split and it maintains an
approximate Gaussian nature. It moves slightly along the x -axis like a particle
maintaining its soliton property. By estimating the actual signal as the mean
of the pdf at every instant, we can filter out the corrupting noise added to
the actual signal. In addition, we reconverted the tracked speech signal and
the noisy speech signal to the WAV format. On listening to these signals, we
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Fig. 9.5. Speech file NU 24streetaddr.wav: (left) Filtering of speech signal im-
mersed in Gaussian noise: “a” represents the actual speech signal and “b” rep-
resents the tracking by the RQNN; (right) Snapshots of wave packets at marker
points (1,2) shown in the left plot
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Fig. 9.6. (left) Filtering of speech signal immersed in Gaussian noise: “a” represents
the actual speech signal and “b” represents the tracking by the RQNN. The x -axis
represents the sample number n of the speech signal. (right) Movement of the wave
packet: wave packet “b” at t = 1.35 s and wave packet “d” at t = 1.45 s

could verify that the RQNN filtering does improve the quality of the input
noisy speech signal if corrupted by zero-mean Gaussian noise.

9.3 A Comprehensive Quantum Model
of Intelligent Behavior

Biological organisms perform many complex tasks with ease. Although we
may have supercomputers that have reached the level of computing power
beyond our imagination, some of the tasks we perform, such as pattern recog-
nition and language undrstanding, are still beyond the reach of such super-
computers. Can quantum-mechanical models better account for such com-
plex behavior in biological organisms? The rest of this chapter is devoted to
this question. We propose a theoretical quantum brain model to explain hu-
man eye movement behavior, where the same collective response attribute of
natural intelligence plays the key role. While simulating the quantum brain
model, two very interesting phenomena are observed. First, as eye-sensor
data is processed in a classical brain, a wave packet is triggered in the quan-
tum brain. This wave packet moves like a particle. Secondly, when the eye
tracks a fixed target, this wave packet moves not in a continuous but rather
in a discrete mode. This result reminds one of the saccadic movements of the
eye consisting of “jumps” and “rests”. However, such a saccadic movement is
intertwined with smooth-pursuit movements when the eye has to track a dy-
namic trajectory. In this sense, the proposed quantum brain concept is very
successful in explaining the nature of eye movements that also accord with
the experimental observations.
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9.4 RQNN-based Eye-Tracking Model

There are certain aspects of brain functions that still appear to have no
satisfactory explanation. As an alternative, researchers [36, 37, 21, 28] are in-
vestigating whether the brain can demonstrate quantum-mechanical behav-
ior. According to a current hypothesis, microtubules, the basic components of
neural cytoskeleton, are very likely to possess quantum-mechanical properties
due to their size and structure. The tubulin protein, which is the structural
block of microtubules, has the ability to flip from one conformation to another
as a result of a shift in the electron-density localization from one resonance
orbital to another. These two conformations act as two basis states of the
system according to whether the electrons inside the tubuline hydrophobic
pocket are localized closer to α or β tubulin. Moreover, the system can lie in
a superposition of these two basis states, that is, being in both states simul-
taneously, which can give a plausible mechanism for creating a coherent state
in the brain. Penrose [30] therefore argued that the human brain must utilize
quantum-mechanical effects when demonstrating problem solving feats that
cannot be explained algorithmically.

In this chapter, instead of going into the biological details of the brain,
we propose a theoretical quantum brain model using the RQNN. The RQNN
model proposed in Sect. 9.2.1 has been modified a little to cope with the
present application. Instead of using a linear neural circuit to set up the po-
tential field in which the quantum brain is dynamically excited, the present
model uses a nonlinear neural circuit. This fundamental change in the archi-
tecture has yielded two novel features. The wave packets, f(x, t) =| ψ(x, t) |2,
are moving like particles. Here ψ(x, t) is the solution of the nonlinear
Schrödinger wave equation that describes the proposed quantum brain model
to explain eye movements for tracking moving targets. The other very inter-
esting observation is that the movements of the wave packets, while tracking
a fixed target, are not continuous but discrete. These observations accord with
the well-known saccadic movement of the eye [3, 18]. In a way, our model is
the first of its kind to explain the nature of eye movements in static scenes
that consists of “jumps” (saccades) and “rests” (fixations). We expect this
result to inspire other researchers to further investigate the possible quantum
dynamics of the brain.

9.4.1 A Theoretical Quantum Brain Model

An impetus to hypothesize a quantum brain model comes from the brain’s
necessity to unify the neuronal response into a single percept. Anatomical,
neurophysiological and neuropsychological evidences, as well as brain imaging
using fMRI and PET scans, show that separate functional MAPs exist in the
brain to code separate features such as direction of motion, location, color
and orientation. How does the brain compute all these data to have a coherent
perception? Here, a very simple model of a quantum brain is proposed, where
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Fig. 9.7. Quantum brain – a theoretical model

a collective response of a neuronal lattice is modeled using a Schrödinger wave
equation as shown in Fig. 9.7.

In this figure, it is shown that an external stimulus reaches each neuron
in a lattice with a probability amplitude function ψi. This hypothesis sug-
gests that the carrier of the stimulus performs quantum computation. The
collective response of all the neurons is given by the superposition

ψ = c1ψ1 + c2ψ2 + · · · + cNψN =
N∑

i=1

ciψi . (9.22)

We suggest that the time evolution of the collective response ψ is described
by the Schrödinger wave equation

i�
∂ψ(x, t)

∂t
= − �

2

2m
∇2ψ(x, t) + V (x)ψ(x, t) , (9.23)

where 2π� is Planck’s constant, ψ(x, t) is the wave function (probability am-
plitude) associated with the quantum object at space–time point (x, t), and
m the mass of the quantum object. Further symbols such as i and ∇ carry
their usual meaning in the context of the Schrödinger wave equation. An-
other way to look at our proposed quantum brain is as follows. A neuronal
lattice sets up a spatial potential field V (x). A quantum process described
by a quantum state ψ, which mediates the collective response of a neuronal
lattice, evolves in the spatial potential field V (x) according to (9.23). Thus
the classical brain sets up a spatiotemporal potential field, while the quantum
brain is excited by this potential field to provide a collective response.

9.4.2 An Eye–Tracking Model using RQNN
with Nonlinear Modulation of Potential Field

In this section we present an extension of RQNN, briefly described in the
previous section. Here, the potential field of the Schrödinger wave equation is
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modulated using a nonlinear neural circuit that results in a much pronounced
soliton behavior of the wave packet. With this modification we now provide
a plausible biological mechanism for eye tracking using the quantum brain
model proposed in Sect. 9.4.1. The mechanism of eye movements, tracking
a moving target consists of three stages as shown in Fig. 9.8: (i) stochastic-
filtering of noisy data that impact the eye sensors; (ii) a predictor that pre-
dicts the next spatial position of the moving target; and (iii) a biological mo-
tor control system that aligns the eye pupil along the moving targets trajec-
tory. The biological eye sensor fans out the input signal y to a specific neural
lattice in the visual cortex. For clarity, Fig. 9.8 shows a one-dimensional array
of neurons whose receptive fields are excited by the signal input y reaching
each neuron through a synaptic connection described by a nonlinear MAP.
The neural lattice responds to the stimulus by setting up a spatial poten-
tial field, V (x, t), which is a function of external stimulus y and estimated
trajectory ŷ of the moving target:

V (x, t) =
n∑

i=1

Wi(x, t)φi(ν(t)) , (9.24)

where φi(.) is a Gaussian kernel function, n represents the number of such
Gaussian functions describing the nonlinear MAP that represents the synap-
tic connections, ν(t) represents the difference between y and ŷ and W repre-
sents the synaptic weights as shown in Fig. 9.8. The Gaussian kernel function
is taken as

φi(ν(t)) = exp(−(ν(t) − gi)2) , (9.25)

where gi is the center of the i-th Gaussian function, φi. This center is chosen
from input space described by the input signal, ν(t), through uniform random
sampling.

Our quantum-brain model proposes that a quantum process mediates the
collective response of this neuronal lattice that sets up a spatial potential field
V (x, t). This happens when the quantum state associated with this quantum

y

1 1W11

WnNn N

V (x)
.
.

⊗
.

.

.

.

motor control predictor

Quantum
activation
function
(Schrödinger
wave equation)

∫
ψ∗xψdx

ψ

−

+ ŷ

Fig. 9.8. Eye tracking-model using RQNN
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process evolves in this potential field. The spatiotemporal evolution follows as
per (9.23). We hypothesize that this collective response is described by a wave
packet, f(x, t) =| ψ(x, t) |2, where the term ψ(x, t) represents a quantum
state. In a generic sense, we assume that a classical stimulus in a brain triggers
a wave packet in the counterpart “quantum brain”. This subjective response,
f(x, t), is quantified using the following estimate equation:

ŷ(t) =
∫

x(t)f(x, t)dx . (9.26)

The estimate equation is motivated by the fact that the wave packet,
f(x, t) =| ψ(x, t) |2 is interpreted as the probability density function. Al-
though computation of (9.26) using the nonlinear Schrödinger wave equation
is straightforward, we hypothesize that this computation can be done through
an interaction between a quantum and a classical brain, using a suitable
quantum measurement operator. At this point we will not speculate about
the nature of such a quantum measurement operator that will estimate the
ψ function necessary to compute (9.26). Based on this estimate, ŷ, the pre-
dictor estimates the next spatial position of the moving target. To simplify
our analysis, the predictor is made silent. Thus its output is the same as that
of ŷ. The biological motor control is commanded to fixate the eye pupil to
align with the target position, which is predicted to be at ŷ. Obviously, we
have assumed that biological motor control is ideal.

After the above-mentioned simplification, the closed form dynamics of the
model described by Fig. 9.8 becomes

i�
∂ψ(x, t)

∂t
= − �

2

2m
∇2ψ(x, t) + ζG

(
y(t) −

∫
x | ψ(x, t) |2 dx

)
, ψ(x, t) ,

(9.27)
where G(.) is a Gaussian kernel MAP introduced to nonlinearly modulate
the spatial potential field that excites the dynamics of the quantum object.
In fact, ζG(.) = V (x, t), where V (x, t) is given in (9.24).

The nonlinear Schrödinger wave equation given by (9.27) is one-di-
mensional with cubic nonlinearity. Interestingly, the closed-form dynamics
of the recurrent quantum neural network (equation (9.27)) closely resembles
a nonlinear Schrödinger wave equation with cubic nonlinearity studied in
quantum electrodynamics [20]:

i�
∂ψ(x, t)

∂t
=
(
− �

2

2m
∇2 − e2

r

)
ψ(x, t) + e2

∫
ψ(x, t) | ψ(x′, t) |2

| x − x′ | dx′ ,

(9.28)
where m is the electron mass, e the elementary charge and r the magnitude
of | x |. Also, nonlinear Schrödinger wave equations with cubic nonlinearity
of the form ∂

∂tA(t) = c1A + c3 | A |2 A, where c1 and c3 are constants,
frequently appear in nonlinear optics [12] and in the study of solitons [24, 11,
15, 33]. Application of the nonlinear Schrödinger wave equation for the study
of quantum systems can also be found in [34].
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In (9.27), the unknown parameters are weights Wi(x, t) associated with
the Gaussian kernel, mass m, and ζ, the scaling factor to actuate the spatial
potential field. The weights are updated using the Hebbian learning algorithm

∂Wi(x, t)
∂t

= βφi(ν(t))f(x, t) , (9.29)

where ν(t) = y(t) − ŷ(t).
The idea behind the proposed quantum computing model is as follows. As

an individual observes a moving target, the uncertian spatial position of the
moving target triggers a wave packet within the quantum brain. The quantum
brain is so hypothesized that this wave packet turns out to be a collective
response of a classical neural lattice. As we combine (9.27) and (9.29), it is
desired that there exist some parameters m, ζ and β such that each specific
spatial position x(t) triggers a unique wave packet, f(x, t) =| ψ(x, t) |2, in
the quantum brain. This brings us to the question of whether the closed
form dynamics can exhibit soliton properties that are desirable for target
tracking. As pointed out above, our equation has a form that is known to
possess soliton properties for a certain range of parameters and we just have
to find those parameters for each specific problem.

We would like to reiterate the importance of the soliton properties. Ac-
cording to our model, eye tracking means tracking of a wave packet in the
domain of the quantum brain. The biological motor control aligns the eye
pupil along the spatial position of the external target that the eye tracks. As
the eye sensor receives data y from this position, the resulting error stimulates
the quantum brain. In a noisy background, if the tracking is accurate, then
this error-correcting signal ν(t) has little effect on the movement of the wave
packet. Precisely, it is the actual signal content in the input y(t) that moves
the wave packet along the desired direction that, in effect, achieves the goal
of the stochastic filtering part of the eye movement for tracking purposes.

9.4.3 Simulation Results II

In this section we present simulation results to test target tracking through
eye movement where targets are either fixed or moving.

For fixed target tracking, we have simulated a stochastic-filtering problem
of a dc signal embedded in Gaussian noise. As the eye tracks a fixed target,
the corresponding dc signal is taken as ya(t) = 2.0, embedded in Gaussian
noise with SNR (signal-to-noise ratio) values of 20 dB, 6 dB and 0 dB.

We next compared the results with the performance of a Kalman fil-
ter [19] designed for this purpose. It should be noted that the operation of
the Kalman filter is based on a priori information that the embedded signal
is a dc signal, whereas the RQNN is not provided with this information. The
Kalman filter also makes use of the fact that the noise is Gaussian and esti-
mates the variance of the noise based on this assumption. Thus it is expected
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that the performance of the Kalman filter will degrade as the noise becomes
non-Gaussian. In contrast, the RQNN model does not make any assumption
about the noise.

Notice that there are certain values of β, m, ζ and N for which the model
performs optimally. A univariate marginal distribution algorithm was used to
get near optimal parameters while fixing N = 400 and � = 1.0. The selected
values of these parameters are as follows for all levels of SNR:

β = 0.86; m = 2.5; ζ = 2000. (9.30)

The comparative performance of eye tracking in terms of rms error for
all the noise levels is shown in Table 9.1. It is easily seen from Table 9.1
that the rms tracking error of RQNN is much less than that of the Kalman
filter. Moreover, RQNN performs equally well for all the three categories of
noise levels, whereas the performance of the Kalman filter degrades with the
increase in noise level. In this sense we can say that our model performs the
tracking with a greater efficiency compared to the Kalman filter. The exact
nature of trajectory tracking is shown for 0 dB SNR in Fig. 9.9. In this figure,
the noise envelope is shown, and obviously its size is large due to a high noise
content in the signal. The figure shows the trajectory of the eye movement
as the eye focuses on a fixed target.

To better appreciate the tracking performance, an error plot is shown in
Fig. 9.10. Although Kalman-filter tracking is continuous, the RQNN model
tracking consists of “jumps” and “fixations”. As the alignment of the eye
pupil becomes closer to the target position, the “fixation” time also increases.
Similar tracking behavior was also observed for the SNR values of 20 and 6 dB.

These theoretical results are very interesting when compared to experi-
mental results in the field of eye-tracking. In eye-tracking experiments, it is
known that eye movements in static scenes are not performed continuously,
but consist of “jumps” (saccades) and “rests” (fixations). Eye-tracking re-
sults are represented as lists of fixation data. Furthermore, if the information
is simple or familiar, eye movement is comparatively smooth. If it is tricky or
new, the eye might pause or even flip back and forth between images. Similar
results are given by our simulations. Our model tracks the dc signal that can
be thought of as equivalent to a static scene, in discrete steps rather than in

Table 9.1. Performance comparison between Kalman filter and RQNN for various
levels of Gaussian noise

Noise level RMS error RMS error
in dB for Kalman filter for RQNN

20 0.0018 0.000040
6 0.0270 0.000062
0 0.0880 0.000090
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Fig. 9.9. (left) Eye tracking of a fixed target in a noisy environment of 0 dB SNR:
“a” respresents fixed target, “b” represents target tracking using RQNN model
and “c” represents target tracking using a Kalman filter. The noise envelope is
represented by the curve “d”; (right) The snapshots of the wave packets at different
instances corresponding to the marker points (1,2,3) as shown in the left figure.
The solid line represent the initial wave packet assigned to the Schrödinger wave
equation

a continuous fashion. This is very clearly understood from the tracking error
in Fig. 9.10.

The other interesting aspect of the results is the movement of wave pack-
ets. It is observed that these wave packets move in discrete steps, i. e. the
movement is not continuous. In Fig. 9.9 (right), snapshots of wave packets
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Fig. 9.10. The continuous line represents the tracking error using RQNN model,
while the broken line represents the tracking error using a Kalman filter
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Fig. 9.11. Wave-packet movements for RQNN with linear weights

are plotted at different instances corresponding to marker points as shown
along the desired trajectory. It can be noticed that a very flat initial Gaussian
wave packet first moves to the left, and then proceeds toward the right un-
til the mean of the wave packet exactly matches the actual spatial position.
A similar pattern of movement of wave packets was also noticed in the case
of 20 and 6 dB SNR. The wave-packet movement is compared with the same,
when instead of nonlinear modulation of the potential field, we use a linear
modulation as described in Sect. 9.2.1 in Fig. 9.11. The initial wave packet
in the previous model first splits into two parts, then moves in a continuous
fashion, ultimately going into a state with a mean of approximately 2 but
with high variance. In contrast, in the present model there is no splitting
of the wave packet, movement is discrete and variance is also much smaller.
Thus the soliton behavior of the present model is highly pronounced.

To analyze the eye movement following a moving target, a sinusoidal signal
ya(t) = 2sin2π10t is taken as the desired dynamic trajectory. This signal is
embedded in 20 dB Gaussian noise. The parameter values for tracking this
signal were fixed at β = 0.01, m = 1.75 and ζ = −250. It is observed that
during the training phase, the wave packet jumps from time to time, thus
changing the tracking error in steps until a steady-state trajectory following
is achieved.

This feature can be better understood from the tracking-error plot that is
shown in Fig. 9.12. In this figure we have plotted the tracking error between
the actual sinusoidal signal and the predicted signal using the estimate (9.26).
It is clearly seen that in the first stage of tracking, the error is fluctuating very
frequently between its local maximum and minimum values in the negative
region. Then this fluctuation settles down in the second stage. In the third
stage this fluctuation starts again and the error is flipping between the local
maxima and minima in the positive region. As the estimation (see (9.26)) of
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Fig. 9.12. Saccadic and pursuit movement of eye during dynamic trajectory fol-
lowing

the signal is very much dependent on the nature of the wave packet, the error
dynamics is also correlated with the wave-packet movement. Discontinuties in
error are reflected in the movement of the wave packet. It is obvious that the
position of the wave packet is changing very frequently in the first stage, thus
changing the mean value correspondingly, and it has no connection with the
signal mean value. This means that there are a number of discontinuties or
“jumps” in the wave-packet movement in the first stage. Then, in the second
stage the movement becomes continuous with the mean values following the
signal mean values. Again in the third stage the discontinuties take place
several times, ultimately achieving a steady-state movement in the last stage.

Once a steady state is achieved, the tracking is efficient and the wave-
packet movement is continuous, as shown in Fig. 9.13. In this figure, the
snapshots of wave packets are plotted for three different instances of time
indicated by the marker points (1,2,3) as shown in the trajectory tracking.
When the signal is at position 1, the corresponding wave packet has a mean at
0. When the signal is at position 2, the corresponding wave packet has a mean
at +2, and the mean of the wave packet moves to –2 when the signal goes to
position 3. As seen in Fig. 9.13, during the continuous movement of the wave
packets, trajectory tracking is smooth, which is similar to smooth-pursuit
movement of biological eye tracking. Smooth pursuit is the eye movement
that smoothly tracks slowly moving targets in the visual field. The purpose of
smooth pursuit is partly to stabilize moving targets on the retina. It is a much
slower movement than saccades. Eye-tracking experiments reveal that when
pursuing a moving target, the smooth eye movements generally have a gain
less than unity. The errors introduced by this are corrected by saccades that
bring the target back on the fovea. Thus after one or two quick saccades
to capture the target, the eye movement attains a steady-state velocity that
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Fig. 9.13. (left) Eye tracking of a moving target in a noisy environment of 20 dB
SNR: “a” respresents a moving target, “b” represents target tracking using RQNN
model; (right) The snapshots of the wave packets at different instances correspond-
ing to the marker points (1,2,3) are shown in the figure. The solid line represents
the initial wave packet assigned to the Schrödinger wave equation

matches the velocity of the target. In other words, during visual tracking
of a moving object, saccadic and smooth-pursuit eye movements combine to
keep the target image close to the fovea [26, 31]. This kind of movement is
also called dual-mode tracking [4]. This experimental result completely agrees
with the obeservation when our theoretical model tracks a smoothly varying
trajectory.

9.5 Concluding Remarks

We presented an alternative neural information-processing architecture where
a quantum process mediates the collective response of a neural lattice having
spatial structure. The key feature of this model is collective response behav-
ior that is identified as an attribute of intelligent behavior. The proposed
RQNN is governed by a single-dimensional nonlinear Schrödinger wave equa-
tion. The nonlinear Schrödinger wave equation that emerged due to recurrent
structure of the network exhibits soliton property – a property that defines
the particle type of movement of the wave packet. Two types of RQNN-
based applications have been considered here. The first application makes
a model naturally more intelligent. In this application, complex signals such
as amplitude-modulated signals and speech signals are denoised without mak-
ing any assumption about the signal and noise as well. In contrast, all preva-
lent techniques use a priori information about the signal and noise before
signals can be denoised.
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The second application is a quantum brain model of eye tracking. The
key concept here is that quantum-based models can be more predictive to
explain complex biological phenomena such as eye-movement behavior. The
interesting finding is that our theoretical model of eye tracking agrees with
previously observed experimental results. The model predicts that eye move-
ments will be of saccadic type while following a static trajectory. In the case
of a dynamic trajectory, the eye movement consists of saccades and smooth
pursuits. In this sense, the proposed quantum brain concept is very success-
ful in explaining the nature of eye movements. Earlier explanations [3] for
saccadic movement have been primarily attributed to a motor control mech-
anism, whereas the present model emphasizes that such eye movements are
due to a decision-making process of the brain – albeit a quantum brain.
Thus the contribution of this chapter for the explanation of biological eye
movement as a neural information-processing event may inspire researchers
to study quantum brain models from the biological perspective.

The other significant contribution is the prediction efficiency of the pro-
posed model over the prevailing model. The stochastic-filtering of a dc signal
using RQNN is 1000 times more accurate compared to a Kalman filter.

At this point we are silent about the exact biological connection between
the classical and the quantum brain, as it is not clear to us. The model just
assumes that the quantum brain is excited by the potential field set up by
the classical brain. Another obvious question is that of decoherence. In this
regard, we admit that the model proposed here is highly idealized since we
have used the Schrödinger wave equation. In our future work we intend to
replace the Schrödinger wave equation by a density matrix approach. Also,
the phase-transition analysis of closed form dynamics, given in (9.27) with
respect to various parameters m, ζ, β and N , has been kept for future work.

Finally, we believe that apart from the computational power derived from
quantum computing, quantum learning systems may also provide a potent
framework to study the subjective aspects of the nervous system [22]. The
challenge to bridge the gap between physical and mental (or objective and
subjective) aspects of matter may be most successfully met within the frame-
work of quantum learning systems. In this framework, we have proposed a no-
tion of a quantum brain, and a recurrent quantum neural network has been
hypothesized as a first step towards a neural computing model.
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