
Page h1 of 36 
 

TITLE PAGE 1 

Title  2 

Neural precursors of deliberate and arbitrary decisions in the study of voluntary action 3 

 4 

Authors 5 

U. Maoz1,2,3*, G. Yaffe4, C. Koch5, L. Mudrik6 6 

 7 

Affiliations  8 

1 Department of Psychology and Brain Institute, Chapman University, Orange, CA, USA. 9 

2 Department of Psychology, University of California, Los Angeles, CA, USA. 10 

3 Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA. 11 

4 Yale Law School, Yale University, New Haven, CT, USA. 12 

5 Allen Institute for Brain Science, Seattle, WA, USA. 13 

6 School of Psychological Science and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel. 14 

* maoz@chapman.edu 15 

 16 

Abstract 17 

The readiness potential (RP)—a key ERP correlate of upcoming action—is known to precede 18 
subjects' reports of their decision to move. Some view this as evidence against a causal role for 19 
consciousness in human decision-making and thus against free-will. Yet those studies focused 20 
on arbitrary decisions—purposeless, unreasoned, and without consequences. It remains 21 
unknown to what degree the RP generalizes to deliberate, more ecological decisions. We 22 
directly compared deliberate and arbitrary decision-making during a $1000-donation task to 23 
non-profit organizations. While we found the expected RPs for arbitrary decisions, they were 24 
strikingly absent for deliberate ones. Our results and drift-diffusion model are congruent with 25 
the RP representing accumulation of noisy, random fluctuations that drive arbitrary—but not 26 
deliberate—decisions. They further point to different neural mechanisms underlying deliberate 27 
and arbitrary decisions, challenging the generalizability of studies that argue for no causal role 28 
for consciousness in decision-making to real-life decisions. 29 
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Significance Statement 32 

The extent of human free will has been debated for millennia. Previous studies demonstrated 33 
that neural precursors of action—especially the readiness potential—precede subjects’ reports 34 
of deciding to move. Some viewed this as evidence against free-will. However, these 35 
experiments focused on arbitrary decisions—e.g., randomly raising the left or right hand. We 36 
directly compared deliberate (actual $1000 donations to NPOs) and arbitrary decisions, and 37 
found readiness potentials before arbitrary decisions, but—critically—not before deliberate 38 
decisions. This supports the interpretation of readiness potentials as byproducts of 39 
accumulation of random fluctuations in arbitrary but not deliberate decisions and points to 40 
different neural mechanisms underlying deliberate and arbitrary choice. Hence, it challenges 41 
the generalizability of previous results from arbitrary to deliberate decisions. 42 

  43 

All rights reserved. No reuse allowed without permission. 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/097626doi: bioRxiv preprint first posted online Jan. 1, 2017; 

http://dx.doi.org/10.1101/097626


Page 3 of 36 
 

MAIN TEXT 44 

Introduction 45 

Humans typically experience freely selecting between alternative courses of action, say, when 46 
ordering a particular item off a restaurant menu. Yet a series of human studies using 47 
electroencephalography (EEG) (Haggard & Eimer, 1999; Libet, Gleason, Wright, & Pearl, 48 
1983; Salvaris & Haggard, 2014), fMRI (Bode & Haynes, 2009; Bode et al., 2011; Soon, 49 
Brass, Heinze, & Haynes, 2008; Soon, He, Bode, & Haynes, 2013), intracranial (Perez et al., 50 
2015), and single-cell recordings (Fried, Mukamel, & Kreiman, 2011) challenged the validity 51 
of this common experience. These studies found neural correlates of decision processes 52 
hundreds of milliseconds and even seconds prior to the moment that subjects reported having 53 
consciously decided. The seminal research that launched this series of studies was conducted 54 
by Benjamin Libet and colleagues (Libet, Gleason, Wright, & Pearl, 1983). There, the authors 55 
showed that the readiness potential (RP)—a ramp-up in EEG negativity before movement 56 
onset, thought to originate from the presupplementary motor area (pre-SMA)—begins before 57 
subjects report a conscious decision to act. Some have claimed, following these and other 58 
findings, that the subjective human experience of freely deciding is but an illusion, because 59 
human actions are unconsciously initiated before the conscious decision to act (Harris, 2012; 60 
Libet et al., 1983; Wegner, 2002). This debate has been captivating scholars from many 61 
disciplines in and outside of academia (C. Frith, Blakemore, & Wolpert, 2000; C. D. Frith & 62 
Haggard, 2018; Haggard, 2008; Jeannerod, 2006; Lau, Rogers, Haggard, & Passingham, 2004; 63 
Mele, 2006; Wegner, 2002). 64 

Critically, in the above studies, subjects were told to arbitrarily move their right hand or flex 65 
their right wrist; or they were instructed to arbitrarily move either the right or left hand 66 
(Haggard, 2008; Hallett, 2016; Roskies, 2010). Thus, their decisions were always unreasoned, 67 
purposeless, and bereft of any real consequence. This stands in sharp contrast to many real-life 68 
decisions that are deliberate—i.e., reasoned, purposeful, and bearing consequences (Ullmann-69 
Margalit & Morgenbesser, 1977): which clothes to wear, what route to take to work, as well as 70 
more formative decisions about life partners, career choices, and so on.  71 

Deliberate decisions have been widely studied in the field of neuroeconomics (Kable & 72 
Glimcher, 2009; Sanfey, Loewenstein, McClure, & Cohen, 2006) and in perceptual tasks (Gold 73 
& Shadlen, 2007). Yet, interestingly, little has been done in that field to assess the relation 74 
between decision-related activity, subjects’ conscious experience of deciding, and the neural 75 
activity instantaneously contributing to this experience. Though some studies compared, for 76 
example, internally driven and externally cued decisions (Thut et al., 2000; Wisniewski, 77 
Goschke, & Haynes, 2016), or stimulus-based and intention-based actions (Waszak et al., 78 
2005), these were typically arbitrary decisions and actions with no real implications. Therefore, 79 
the results of these studies provide no direct evidence about potential differences between 80 
arbitrary and deliberate decisions. 81 

Such direct comparisons are critical for the free will debate, because it is deliberate, rather than 82 
arbitrary, decisions that are at the center of philosophical arguments about free will and moral 83 
responsibility (Breitmeyer, 1985; Roskies, 2010). Deliberate decisions typically involve more 84 
conscious and lengthy deliberation and might thus be more tightly bound to conscious 85 
processes than arbitrary ones. Thus, one could speculate that different findings might be 86 
obtained when inspecting the RP in arbitrary compared to deliberate decisions. 87 

A further reason to expect such differences stems from a recent computational model, which 88 
challenged the claim that the RP represents a genuine marker of unconscious decisions. Rather, 89 
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the model suggested that the RP might reflect the artificial accumulation, up to a threshold, of 90 
stochastic fluctuations in neural activity. In the model, crossing the threshold directly leads to 91 
action (Schurger, Sitt, & Dehaene, 2012). Such stochastic fluctuations are expected to be the 92 
sole driver of arbitrary decisions; while it is the values of the decision alternatives that drive 93 
deliberate decisions. Therefore, the model appears to predict no RP for deliberate decisions.  94 

Demonstrating no, or considerably diminished, RP in deliberate decisions would challenge the 95 
interpretation of the RP as a general index of internal decision-making. More critically, it 96 
would question the generalizability of studies focused on arbitrary decisions to everyday, 97 
ecological, deliberate decisions. 98 

Here, we tested this prediction and directly compared the neural precursors of deliberate and 99 
arbitrary decisions—and in particular the RP—on the same subjects, in an EEG experiment. 100 
Our experiment utilized a donation-preference paradigm, in which a pair of non-profit 101 
organizations (NPOs) were presented in each trial. In deliberate-decision trials, subjects chose 102 
to which NPO they would like to donate $1000. In arbitrary-decision trials, both NPOs 103 
received an equal donation of $500, irrespective of subjects’ key presses (Fig. 1). In both 104 
conditions, subjects were instructed to report their decisions as soon as they made them, and 105 
their hands were placed on the response keys, to make sure they could do so as quickly as 106 
possible. Notably, while the visual inputs and motor outputs were identical between deliberate 107 
and arbitrary decisions, the decisions’ meaning for the subjects was radically different: in 108 
deliberate blocks, the decisions were meaningful and consequential—reminiscent of important, 109 
real-life decisions—while in arbitrary blocks, the decisions were meaningless and bereft of 110 
consequences—mimicking previous studies of volition.  111 

 112 

Results 113 

Behavioral Results  114 

Subjects’ reaction times (RTs) were analyzed using a 2-way ANOVA along decision 115 
type (arbitrary/deliberate) and difficulty (easy/hard). This was carried out on log-116 
transformed data (raw RTs violated the normality assumption; W=0.94, p=0.001). 117 
As expected, subjects were substantially slower for deliberate (M=2.33, SD=0.51) 118 
than for arbitrary (M=0.99, SD=0.32) decisions (Fig. 2, left; F(1,17)=126.11, 119 
p<0.0001 for the main effect of decision type). A main effect of decision difficulty 120 
was also found F(1,17)=18.76, p=0.0004), with difficult decisions (M=1.77, 121 
SD=0.40) being slower than easy ones (M=1.56, SD=0.28). Importantly, subjects 122 
were slower for hard (M=2.52, SD=0.62) vs. easy (M=2.13, SD=0.44) decisions in 123 
the deliberate case (hard vs. easy deliberate decisions: t(17)=4.78, p=0.0002), yet 124 
not for the arbitrary case (M=1.00, SD=0.34; M=0.98, SD=0.32, for hard and easy 125 
arbitrary decisions, respectively; t(17)=1.01, p=0.33; F(1,17)=20.12, p=0.0003 for 126 
the interaction between decision type and decision difficulty). This validates our 127 
experimental manipulation and further demonstrates that, in deliberate decisions, 128 
subjects were making meaningful decisions, affected by the difference in the values 129 
of the two NPOs, while for arbitrary decisions they were not. What is more, the 130 
roughly equal RTs between easy and hard arbitrary decisions provide evidence 131 
inconsistent with concerns that subjects were deliberating during arbitrary decisions. 132 

All rights reserved. No reuse allowed without permission. 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/097626doi: bioRxiv preprint first posted online Jan. 1, 2017; 

http://dx.doi.org/10.1101/097626


Page 5 of 36 
 

 133 

Figure 1: Experimental paradigm. The experiment included deliberate (red, left panel) and 134 
arbitrary (blue, right panel) blocks, each containing nine trials. In each trial, two causes—135 
reflecting NPO names—were presented, and subjects were asked to either choose to which 136 
NPO they would like to donate (deliberate), or to simply press either right or left, as both NPOs 137 
would receive an equal donation (arbitrary). They were specifically instructed to respond as 138 
soon as they reached a decision, in both conditions. Within each block, some of the trials were 139 
easy (lighter colors) decisions, where the subject’s preferences for the two NPOs substantially 140 
differed (based on a previous rating session), and some were hard decisions (darker colors), 141 
where the preferences were more similar; easy and hard trials were randomly intermixed within 142 
each block. To make sure subjects were paying attention to the NPO names, even in arbitrary 143 
trials, and to better equate the cognitive load between deliberate and arbitrary trials, memory 144 
tests (in light grey) were randomly introduced. There, subjects were asked to determine which 145 
of four NPO names appeared in the immediately previous trial. For a full list of NPOs and 146 
causes see Supplementary Table 1. 147 

The consistency between subjects’ choices throughout the main experiment and the NPO 148 
ratings they gave prior to the main experimental session was also analyzed using a 2-way 149 
ANOVA (see Methods). As expected, subjects were highly consistent with their own, previous 150 
ratings when making deliberate decisions (M=0.91, SD=0.04), but not when making arbitrary 151 
(M=0.52, SD=0.04) ones (Fig. 2, right; F(1,17)=946.55, p<0.0001) for the main effect of 152 
decision type. A main effect of decision difficulty was also found (F(1,17)=57.39, p<0.0001), 153 
with hard decisions evoking less consistent scores (M=0.66, SD=0.05) than easy ones 154 
(M=0.76, SD=0.03). Again, decision type and decision difficulty interacted (F(1,17)=25.96, 155 
p<0.0001): subjects were much more consistent with their choices in easy (M=0.99, SD=0.02) 156 
vs. hard (M=0.83, SD=0,64) deliberate decisions (t(17)=11.15, p<0.0001), than they were in 157 
easy (M=0.54, SD=0.07) vs. hard (M=0.49, SD=0.05) arbitrary decisions (t(17)=2.50, 158 
p=0.028). Nevertheless, though subjects were around chance (i.e., 0.5) in their consistency in 159 
arbitrary decisions (ranging between 0.39 and 0.64), it seems that some subjects were slightly 160 
influenced by their preferences in easy-arbitrary decisions trials, resulting in the significant 161 
difference between hard-arbitrary and easy-arbitrary decisions above. Finally, no differences 162 
were found between subjects’ tendency to press the right vs. left key in the different conditions 163 
(both main effects and interaction: F<1).  164 

 165 
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 166 

Figure 2: Behavioral results. Reaction Times (RTs; left) and Consistency Grades (CG; right) 167 
in arbitrary (blue) and deliberate (red) decisions. Each dot represents the average RT/CG for 168 
easy and hard decisions for an individual subject (hard decisions: x-coordinate; easy decisions: 169 
y-coordinate). Group means and SEs are represented by dark red and dark blue crosses. The red 170 
and blue histograms at the bottom-left corner of each plot sum the number of red and blue dots 171 
with respect to the solid diagonal line. The dashed diagonal line represents equal RT/CG for 172 
easy and hard decisions; data points below that diagonal indicate longer RTs or higher CGs for 173 
hard decisions. In both measures, arbitrary decisions are more centered around the diagonal 174 
than deliberate decisions, showing no or substantially reduced differences between easy and 175 
hard decisions. 176 

EEG Results: Readiness Potential (RP) 177 

The RP is generally held to index unconscious readiness for upcoming movement (Haggard, 178 
2008; Kornhuber & Deecke, 1990; Libet et al., 1983; Shibasaki & Hallett, 2006); although 179 
more recently, alternative interpretations of the RP have been suggested (Miller, Shepherdson, 180 
& Trevena, 2011; Schmidt, Jo, Wittmann, & Hinterberger, 2016; Schurger et al., 2012; 181 
Trevena & Miller, 2010; Verleger, Haake, Baur, & Śmigasiewicz, 2016). It has nevertheless 182 
been the standard component studied in EEG versions of the Libet paradigm (Haggard, 2008; 183 
Haggard & Eimer, 1999; Hallett, 2007; Libet, 1985; Libet et al., 1983; Libet, Wright, & 184 
Gleason, 1982; Miller et al., 2011; Schurger et al., 2012; Shibasaki & Hallett, 2006; Trevena & 185 
Miller, 2010). As is common, we measured the RP over electrode Cz in the different conditions 186 
by averaging the activity across trials in the 2 s prior to subjects’ movement.  187 

Focusing on the last 500 ms before movement onset for our statistical tests, we found a clear 188 
RP in arbitrary decisions, yet RP amplitude was not significantly different from 0 in deliberate 189 
decisions (Fig. 3A; F(1,17)=11.86, p=0.003, BF=309.21 for the main effect of decision type; in 190 
t-tests against 0, corrected for multiple comparisons, an effect was only found for arbitrary 191 
decisions (hard: t(17)=5.09, p=0.0001, BF=307.38; easy: t(17)=5.75, p<0.0001, BF=1015.84) 192 
and not for deliberate ones; the Bayes factor—while trending in the right direction—indicated 193 
inconclusive evidence (hard: t(17)=1.24, p>0.5, BF=0.47; easy: t(17)=1.84, p=0.34, BF=0.97). 194 
Our original baseline was stimulus locked (see Methods). And we hypothesized that the 195 
inconclusive Bayes factor for deliberate trials had to do with a constant, slow, negative drift 196 
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that our model predicted for deliberate trials (see below) rather than reflecting a typical RP. As 197 
the RTs for deliberate trials were longer than for arbitrary ones, this trend might have become 198 
more pronounced for those trials. To test this, we switched the baseline period to -1000 ms 199 
to -500 ms relative to movement onset (i.e., a baseline that immediately preceded our time of 200 
interest window). Under this analysis, we found evidence that deliberate decisions (pooled 201 
across decision difficulty) are not different from 0 (BF=0.332), supporting the claim that the 202 
RP during the last 500 ms before response onset was completely absent (BF for similarly 203 
pooled arbitrary decisions was 5.07·104). 204 

 205 

Figure 3: The readiness potentials for deliberate and arbitrary decisions. (A) Mean and SE 206 
of the readiness potential (RP) in deliberate (red shades) and arbitrary (blue shades) easy and 207 
hard decisions in electrode Cz, as well as scalp distributions. Zero refers to time of right/left 208 
movement, or response, made by the subject. Notably, the RP significantly differs from zero 209 
and displays a typical scalp distribution for arbitrary decisions only. Similarly, temporal 210 
clusters where activity was significantly different from 0 were found for arbitrary decisions 211 
only (horizontal blue lines above the x axis). Bar plot insets and scalp distributions depict the 212 
average activity between -0.5 and 0 s, across subjects. The inset shows the mean amplitude of 213 
the RP, with 95% confidence intervals, over the same time window. Response-locked potentials 214 
with an expanded timecourse, and stimulus-locked potentials are given in Fig. 6B and 6A, 215 
respectively. The same (response-locked) potentials as here, but with a movement-locked 216 
baseline of -1 to -0.5 s (same as in our Bayesian analysis), are given in Fig. 6C. (B) Individual 217 
subjects’ Cz activity in the four conditions (n=18). The linear-regression line for voltage against 218 
time over the last 1000 ms before response onset is designated by a dashed, black line. The 219 
lines have slopes significantly different from 0 for arbitrary decisions only. Note that the 220 
waveforms converge to an RP only in arbitrary decisions. 221 

In an effort to further test for continuous time regions where the RP is different from 0 for 222 
deliberate and arbitrary trials, we ran a cluster-based nonparametric permutation analysis 223 
(Maris & Oostenveld, 2007) for all four conditions against 0. Using the default parameters (see 224 
Methods), we found a prolonged cluster (~1.2s) of activation that reliably differed from 0 in 225 
both arbitrary conditions (designated by horizontal blue-shaded lines above the x axis in Fig. 226 
3A). The same analysis revealed no clusters of activity differing from zero in either of the 227 
deliberate conditions.  228 
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In a similar manner, regressing voltage against time for the last 1000 ms before response onset, 229 
the downward trend was significant for arbitrary decisions (Fig. 3B; p<0.0001, BF>1025 for 230 
both easy and hard conditions) but not for deliberate decisions, with the Bayes factor indicating 231 
conclusive evidence for no effect (hard: p>0.5, BF=0.09; easy: p=0.35, BF=0.31; all 232 
Bonferroni corrected for multiple comparisons). Notably, this pattern of results was also 233 
manifested for single-subject analysis (Fig. 4; 14 of the 18 subjects had significant downward 234 
slopes for arbitrary decisions—i.e., p<0.05, Bonferroni corrected for multiple comparisons—235 
when regressing voltage against time for every trial over the last 1000 ms before response 236 
onset; but only 5 of the 18 subjects had significant downward slopes for the same regression 237 
analysis for deliberate decisions; see Methods. In addition, the average slopes for deliberate 238 
and arbitrary decisions were -0.28±0.25 and -1.9±0.32 (mean±SE), respectively, a significant 239 
difference: t(17)=4.55, p<0.001, BF=380.02).    240 

 241 

Figure 4: Individual-subjects RPs. Six examples of for individual subjects’ RPs for deliberate 242 
decisions (in red) and arbitrary ones (in blue) pooled across decision difficulty. 243 

Deliberate
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Control analyses 244 

We further tested whether differences in reaction time between the conditions, eye movements, 245 
filtering, and subjects’ consistency scores might explain our effect. We also tested whether the 246 
RPs might reflect some stimulus-locked potentials or be due to baseline considerations.  247 

Differences in reaction times (RT) between conditions, including stimulus-locked potentials 248 
and baselines, do not drive the effect  249 

RTs in deliberate decisions were typically more than twice as long as RTs in arbitrary 250 
decisions. We therefore wanted to rule out the possibility that the absence of RP in deliberate 251 
decisions stemmed from the difference in RTs between the conditions. We carried out six 252 
analyses for this purpose. First, we ran a median split analysis—dividing the subjects into two 253 
groups based on their RTs: lower (faster) and higher (slower) than the median, for deliberate 254 
and arbitrary trials, respectively. We then ran the same analysis using only the faster subjects 255 
in the deliberate condition (M=1.91 s, SD=0.25) and the slower subjects in the arbitrary 256 
condition (M=1.25 s, SD=0.23). If RT length affects RP amplitudes, we would expect the RP 257 
amplitudes to be more similar between these two groups. However, though there were only 258 
half the data points, a similar pattern of results to those over the whole dataset was observed 259 
(Fig. 5A; compare to Fig. 3A). Deliberate and arbitrary decisions were still reliably different 260 
(F(1,17)=5.22, p=0.03), with significant RPs found in arbitrary (easy: t(8)=4.57, p=0.0018; 261 
hard: t(8)=4.09, p=0.0035), but not deliberate (easy: t(8)=1.92, p=0.09; hard: t(8)=0.63, 262 
p=0.54) decisions. In addition, the RPs for arbitrary decisions were not significantly different 263 
between the subjects with above-median RTs and the entire population for the easy or hard 264 
conditions (easy: t(25)=0.14, p>0.5; hard: t(25)=0.56, p>0.5). Similarly, the RPs for deliberate 265 
decisions were not significantly different between the subjects with below-median RTs and the 266 
entire population for the easy or hard conditions (easy: t(25)=-0.34, p>0.5; hard: t(25)=0.17, 267 
p>0.5). This suggest that RTs do not reliably affect Cz activation for deliberate or arbitrary 268 
decisions in our results.  269 

Second, we regressed the difference between RPs in deliberate and arbitrary decisions 270 
(averaged over the last 500 ms before response onset) against the difference between the RTs 271 
in these two conditions for each subject (Fig. 5B). Again, if RT length affects RP amplitudes, 272 
we would expect differences between RTs in deliberate and arbitrary conditions to correlate 273 
with differences between RPs in the two conditions. But no correlation was found between the 274 
two measures (r=0.22, t(16)=0.86, p=0.4). We further tried regressing the RP differences on 275 
RT differences. The regression did not produce any reliable relation between RT and RP 276 
differences (regression line: y = 0.54 [CI -0.8, 1.89] x - 0.95 [CI -2.75, 0.85]; the R2 was very 277 
low, at 0.05 (as expected from the r value above), and, as the confidence intervals suggest, the 278 
slope was not significantly different from 0, F(1,16)=0.74, p=0.4).  279 

While the results of the above analyses suggested that our effects do not stem from differences 280 
between the RTs in deliberate and arbitrary decisions, the average RTs for fast deliberate 281 
subjects were still 660 ms slower than for slow arbitrary subjects. In addition, we had only half 282 
of the subjects in each condition due to the median split, raising the concern that some of our 283 
null results might have been underpowered. We also wanted to look at the effect of cross-trial 284 
variations within subjects and not just cross-subjects ones. We therefore ran a third, within-285 
subjects analysis. We combined the two decision difficulties (easy and hard) for each decision 286 
type (arbitrary and deliberate) for greater statistical power. And then we took the faster (below-287 
median RT) deliberate trials and slower (above-median RT) arbitrary trials for each subject 288 
separately. So, this time we had 17 subjects (again, one was removed) and better powered 289 
results. Here, fast deliberate arbitrary trials (M=1.63 s, SD=0.25) were just 230 ms slower than 290 
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slow arbitrary decisions (M=1.40 s, SD=0.45), on average. This cut the difference between fast 291 
deliberate and slow arbitrary by about 2/3 from the between-subjects analysis. We then 292 
computed the RPs for just these fast deliberate and slow arbitrary trials within each subject 293 
(Fig. 5C). Visually, the pattern there is the same as the main analysis (Fig. 3A). What is more, 294 
deliberate and arbitrary decisions remained reliably different (t(16)=3.36, p=0.004). Arbitrary 295 
trials were again different from 0 (t(16)=-4.40, p=0.0005), while deliberate trials were not 296 
(t(16)=-1.54, p=0.14). 297 

 298 

Figure 5: Relations between RTs and RPs between subjects (A&B) and within subjects 299 
(C&D). (A) The subjects with above-median RTs for arbitrary decisions (in blue) and below-300 
median RTs for deliberate decisions (in red), show the same activity pattern that was found in 301 
the main analysis (compare Fig. 3A). (B) A regression of the difference between the RPs versus 302 
the difference between the RTs for deliberate and arbitrary decisions for each subject. The 303 
equation of the regression line (solid red) is y = 0.54 [CI -0.8, 1.89] x - 0.95 [CI -2.75, 0.85] 304 
(confidence intervals: dashed red lines). The R2 is 0.05. One subject, #7, had an RT difference 305 
between deliberate and arbitrary decisions that was more than 6 interquartile ranges (IQRs) 306 
away from the median difference across all subjects. That same subject’s RT difference was 307 
also more than 5 IQRs higher than the 75th percentile across all subjects. That subject was 308 
therefore designated an outlier and removed only from this regression analysis. (C) For each 309 
subject separately, we computed the RP using only the faster (below-median RT) deliberate 310 
trials and slower (above-median RT) arbitrary trials. The pattern is again the same as the one 311 
found for the main analysis. (D) We computed the same regression between the RP differences 312 
and the RT differences as in B, but this time the median split was within subjects. The equation 313 
of the regression line is y = 1.27 [CI -0.2, 2.73] x - 0.95 [CI 0.14, 1.76]. The R2 is 0.18. 314 
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We further regressed the within-subject differences between RPs in fast deliberate and slow 315 
arbitrary decisions (defined as above) against the differences between the corresponding RTs 316 
for each subject to ascertain that such a correlation would not exist for trials that are closer 317 
together. We again found no reliable relation between the two differences (Fig. 5D; regression 318 
line: y = 1.27 [CI -0.2, 2.73] x - 0.95 [CI 0.14, 1.76]; R2=0.18). 319 

Yet another concern that could relate to the RT differences among the conditions is that the RP 320 
in arbitrary blocks might actually be some potential evoked by the stimuli (i.e., the 321 
presentations of the two causes), specifically in arbitrary blocks, where the RTs are shorter 322 
(and thus stimuli-evoked effects could still affect the decision). In particular, a stimulus-evoked 323 
potential might just happen to bear some similarity to the RP when plotted locked to response 324 
onset. To test this explanation, we ran a fifth analysis, plotting the potentials in all conditions, 325 
locked to the onset of the stimulus (Fig. 6A). We also plotted the response-locked potentials 326 
across an expanded timecourse for comparison (Fig. 6B). If the RP-like shape we see in Figs. 327 
3A and 6B is due to a stimulus-locked potential, we would expect to see the following before 328 
the 4 mean response onset times (indicated by vertical lines at 0.98 and 1.00, 2.13, and 2.52 s 329 
for arbitrary easy, arbitrary hard, deliberate easy, and deliberate hard, respectively) in the 330 
stimulus-locked plot (Fig. 6A): Consistent potentials, which precede the mean response times, 331 
that would further be of a similar shape and magnitude to the RPs found in the decision-locked 332 
analysis in the arbitrary condition (though potentially more smeared for stimulus locking). We 333 
thus calculated a stimulus-locked version of our ERPs, using the same baseline (Fig. 6A). As 334 
the comparison between Fig. 6A and 6B clearly shows, no such consistent potentials were 335 
found before the 4 response times, nor were these potentials similar to the RP in either shape or 336 
magnitude (their magnitudes are at the most around 1µV, while the RP magnitudes we found 337 
are around 2.5 µV; Figs. 3A, 6B). This analysis thus suggests that it is unlikely that a stimulus-338 
locked potential drives the RP we found.  339 

Notably, the stimulus-locked alignment did imply that the arbitrary easy condition evoked a 340 
stronger activity in roughly the last 0.5 s before stimulus onset. However, this prestimulus 341 
activity cannot explain the response-locked RP, as it was found only in arbitrary easy trials 342 
and not in arbitrary hard trials. At the same time, the response-locked RP did not differ 343 
between these conditions. What is more, easy and hard trials were randomly interspersed 344 
within deliberate and arbitrary blocks, and the subject discovered the trial difficulty only at 345 
stimulus onset. Thus, there could not have been differential preparatory activity that varies 346 
with decision difficulty. This divergence in one condition only is accordingly not likely to 347 
reflect any preparatory RP activity. 348 

One more concern is that the differences in RTs may affect the results in the following manner: 349 
Because the main baseline period we used thus far was 1 to 0.5 s before stimulus onset, the 350 
duration from the baseline to the decision varied widely between the conditions. To make sure 351 
this difference in temporal distance between the baseline period and the response to which the 352 
ERPs were locked did not drive our results, we recalculated the potentials for all conditions 353 
with a response-locked baseline of -1 to -0.5 s (Fig. 6C; the same baseline we used for the 354 
Bayesian analysis above). The rationale behind this choice of baseline was to have the time 355 
that elapsed from baseline to response onset be the same across all conditions. As is evident in 356 
Fig. 6C, the results for this new baseline were very similar to those for the stimulus-locked 357 
baseline we used before. Focusing again on the -0.5 to 0 s range before response onset for our 358 
statistical tests, we found a clear RP in arbitrary decisions, yet RP amplitude was not 359 
significantly different from 0 in deliberate decisions (Fig. 6C; ANOVA F(1,17)=12.09, 360 
p=0.003 for the main effect of decision type; in t-tests against 0, corrected for multiple 361 
comparisons, an effect was only found for arbitrary decisions (hard: t(17)=4.13, p=0.0007; 362 
easy: t(17)=4.72, p=0.0002) and not for deliberate ones (hard: t(17)=0.38, p>0.5; easy: 363 
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t(17)=1.13, p=0.27). This supports the notion that the choice of baseline does not strongly 364 
affect our main results. Taken together, the results of the six analyses above provide strong 365 
evidence against the claim that the differences in RPs stem from or are affected by the 366 
differences in RTs between the conditions. 367 

 368 

Figure 6: Stimulus- and response-locked Cz-electrode ERPs with different baselines and 369 
overlaid events. (A) Stimulus-locked waveforms including the trial onset range, baseline 370 
period, and mean reaction times for all four experimental conditions. (B) Response-locked 371 
waveforms with mean stimulus onsets for all four conditions as well as the offset of the 372 
highlighting of the selected cause and the start of the next trial. (C) Same potentials and 373 
timeline as Fig. 3A, but with a response-locked baseline of -1 to -0.5 s—the same baseline used 374 
for our Bayesian analysis. 375 

Eye movements do not affect the results 376 

Though ICA was used to remove blink artifacts and saccades (see Methods), we wanted to 377 
make sure our results do not stem from differential eye movement patterns between the 378 
conditions. We therefore computed a saccade-count metric (SC; see Methods) for each trial for 379 
all subjects. Focusing again on the last 500 ms before response onset, we computed mean 380 
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(±s.e.m.) SC values of 1.65±0.07 and 1.67±0.06 saccades for easy and hard deliberate 381 
decisions, respectively, and 1.69±0.07 and 1.73±0.07 saccades for easy and hard arbitrary 382 
decisions, respectively. We found no reliable differences between the number of saccades 383 
during deliberate and arbitrary trials (F(1,17)=2.56, p=0.13 for main effect of decision type). 384 

We further investigated potential effects of saccades by running a median-split analysis—385 
dividing the trials for each subject into two groups based on their SC score: lower and higher 386 
than the median, for deliberate and arbitrary trials, respectively. We then ran the same analysis 387 
using only the trials with more saccades in the deliberate condition (SC was 2.02±0.07 and 388 
2.04±0.07 for easy and hard, respectively) and those with less saccades for the arbitrary 389 
condition (SC was 1.33±0.07 and 1.31±0.08 for easy and hard, respectively). If the number of 390 
saccades affects RP amplitudes, we would expect that the differences in RPs between arbitrary 391 
and deliberate trials will diminish, or even reverse (as now we had more saccades in the 392 
deliberate condition). However, though there were only half the data points for each subject in 393 
each condition, a similar pattern of results to those over the whole dataset was observed: 394 
Deliberate and arbitrary decisions were still reliably different within the median-split RPs 395 
(F(1,17)=16.70, p<0.001), with significant RPs found in arbitrary (easy: t(17)=4.79, p=0.002; 396 
hard: t(17)=5.77, p<0.001), but not deliberate (easy: t(17)=0.90, p=0.38; hard: t(17)=0.30, 397 
p>0.5) decisions. In addition, we compared the RP data across all the trials with the median-398 
split RP data above. No significant differences were found for arbitrary decisions (easy: 399 
t(17)=1.02, p=0.32; hard: t(17)=0.75, p=0.46) or for deliberate decisions (easy: t(17)=1.63, 400 
p=0.12; hard: t(17)=1.47, p=0.16). Taken together, the analyses above provide strong evidence 401 
against the involvement of eye movements in our results.  402 

Testing alternative explanations 403 

We took a closer look at subjects’ behavior in the easy arbitrary condition, where some 404 
subjects had a consistency score that was further above 0.5 (chance) than others. It seems like 405 
those subjects had a greater difficulty ignoring their preferences, despite the instructions to do 406 
so. We therefore wanted to test to what extent the RP of those subjects was similar to the RPs 407 
of the other subjects. Focusing on the 8 subjects that had a consistency score above 0.55 408 
(M=0.59, SD=0.03) and comparing their RPs to those of the 10 other subjects (consistency 409 
M=0.50, SD=0.06) in easy arbitrary trials, we found no reliable differences (t(16)=0.94, 410 
p=0.36). This is not surprising, as the mean consistency score of these subjects—though higher 411 
than chance—was still far below their consistency score for easy deliberate decisions (M=0.99, 412 
SD=0.02). 413 

High-pass filter cutoff frequency does not affect the results 414 

Finally, another alternative explanation might rely on our selection of high-pass filter cutoff 415 
frequency, which was 0.1 Hz. Though this frequency was used in some studies of the RP (e.g., 416 
Lew, Chavarriaga, Silvoni, & Millán, 2012; MacKinnon, Allen, Shiratori, & Rogers, 2013), 417 
others opted for lower cutoff frequencies (e.g., Haggard & Eimer, 1999). Arguably, a higher 418 
cutoff frequency for the high-pass filter might reduce the chances to find the RP, which is a 419 
low-frequency component. And this might have affected the deliberate decision more than the 420 
arbitrary one, given the slower RTs there. To examine this possible confound, we reanalyzed 421 
the data using a 0.01 high-pass filter. This reduced the number of usable trials for each subject, 422 
as it allowed lower-frequency trends to remain in the data. Given that our focus was on 423 
arbitrary vs. deliberate decisions (with decision difficulty serving mostly to validate the 424 
manipulation), we collapsed the trials across decision difficulty, and only tested RP amplitudes 425 
in arbitrary vs. deliberate decisions against each other and against zero. In line with our 426 
original results, a difference was found between RP amplitude in the two conditions 427 
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(t(13)=2.29, p=0.0394), with RP in the arbitrary condition differing from zero (t(13)=-5.71, 428 
p<0.0001), as opposed to the deliberate condition, where it did not (t(13)=-0.76, p=0.462). This 429 
provides evidence against the claim that our results are due to our choice of high-pass filter. 430 

EEG Results: Lateralized Readiness Potential (LRP) 431 

The LRP, which reflects activation processes within the motor cortex for action preparation 432 
after action selection (Eimer, 1998; Masaki, Wild-wall, Sangals, & Sommer, 2004), was 433 
measured by subtracting the difference potentials (C3-C4) in right-hand response trials from 434 
this difference in left-hand responses trials and averaging the activity over the same time 435 
window (Eimer, 1998; Haggard & Eimer, 1999). In this purely motor component, no 436 
difference was found between the two decision types and conclusive evidence against an effect 437 
of decision type was further found (Fig. 7; all Fs<0.35; BF=0.299). Our analysis of EOG 438 
channels suggests that some of that LRP might be driven by eye movements (we repeated the 439 
LRP computation on the EOG channels instead of C3 and C4). However, the shape of the eye-440 
movement-induced LRP is very different from the LRP we calculated from C3 and C4. Also, 441 
the differences that we found between conditions in the EOG LRP are not reflected in the 442 
C3/C4 LRP. So, while our LRP might be boosted by eye movements, it is not strictly driven by 443 
these eye movements.  444 

 445 
Figure 7: Lateralized readiness potential. The lateralized readiness potential (LRP) for 446 
deliberate and arbitrary, easy and hard decisions. No difference was found between the 447 
conditions (ANOVA all Fs<1). Temporal clusters where the activity for each condition was 448 
independently found to be significantly different from 0 are designated by horizontal thick lines 449 
at the bottom of the figure (with their colors matching the legend). 450 

  451 
Modeling 452 

The main finding of this study—the absent (or at least strongly diminished) RP in deliberate 453 
decisions, suggesting different neural underpinnings of arbitrary and deliberate decisions—is 454 
in line with a recent study using a drift-diffusion model (DDM) to investigate the RP (Schurger 455 
et al., 2012). There, the RP was modeled as an accumulation of white noise up to a hard 456 
threshold. When activity crosses that threshold, it designates decision-onset leading to 457 
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movement. The model focuses on the activity leading up to the threshold crossing, when that 458 
activity is time-locked to the onset of the threshold crossing (corresponding to movement-459 
locked epochs in EEG). Averaging across many threshold crossings, this white-noise activity 460 
accumulates, and it resembles an RP (Schurger et al., 2012). Hence, according to this model, 461 
the threshold crossing leading to response onset is largely determined by spontaneous, 462 
subthreshold, white-noise fluctuations of the neural activity. This interpretation of the RP 463 
challenges its traditional understanding as stemming from specific, unconscious preparation 464 
for, or ballistic-like initiation of, movement (Shibasaki & Hallett, 2006). Instead, Schurger and 465 
colleagues claimed, time-locking to response onset ensures that these spontaneous fluctuations 466 
appear, when averaged over many trials, as a ramp-up in neural activity resembling an RP.  467 

We wanted to investigate whether our results could be accommodated within the general 468 
framework of the Schurger model. We wanted to test the possibility that deliberate and 469 
arbitrary decisions are mediated by two different mechanisms. The first mechanism is involved 470 
in value assessment and drives deliberate decisions. It may be subserved by brain regions like 471 
the Ventromedial Prefrontal Cortex; VMPFC, (Ramnani & Owen, 2004; Wallis, 2007). But, 472 
for the sake of the model, we will remain agnostic about the exact location associated with 473 
deliberate decisions and refer to this region as Region X. A second mechanism, possibly at the 474 
(pre-)SMA, was held to generate arbitrary decisions driven by random, noise fluctuations.  475 

Accordingly, we expanded the model developed by Schurger et al. (2012) in two manners. 476 
First, we defined two DDM processes—one devoted to value-assessment (in Region X) and the 477 
other to noise-generation (in SMA; see Fig. 8A and Methods). Both of them were run during 478 
both decision types, yet the former determined the result of deliberate trials, and the latter 479 
determined the results of arbitrary trials. Second, Schurger and colleagues modeled only when 480 
subjects would move and not what (which hand) subjects would move. We wanted to account 481 
for the fact that, in our experiment, subjects not only decided when to move, but also what to 482 
move (either to indicate which NPO they prefer in the deliberate condition, or to generate a 483 
meaningless right/left movement in the arbitrary condition). We modeled this by defining two 484 
types of movement. One was moving the hand corresponding to the location of the NPO that 485 
was rated higher in the first, rating part of the experiment (the congruent option; see Methods). 486 
The other was moving the hand corresponding to the location of the lower-rated NPO (the 487 
incongruent option). We used the race-to-threshold framework to model the decision processed 488 
between a pair of leaky, stochastic accumulators, or DDMs (see again Fig. 8A). One DDM 489 
simulated the process that leads to selecting the congruent option, and the other simulated the 490 
process that leads to selecting the incongruent option. Hence, in each model run, the two 491 
DDMs ran in parallel; the first one to cross the threshold determined the decision outcome. 492 
And so, if the DDM corresponding to the congruent (incongruent) option reached the threshold 493 
first, the trial ended with selecting the congruent (incongruent) option. Thus, for deliberate 494 
decisions, the congruent cause had a higher value than the incongruent cause; the DDM 495 
associated with the congruent option accordingly had a higher drift rate than that of the DDM 496 
associated with the incongruent option. For arbitrary decisions, the values of the decision 497 
alternatives mattered very little and this was reflected in the small differences, if at all, among 498 
the drift rates (Table 1).  499 

Therefore, taken together, these two changes to the original model by Schurger and colleagues 500 
resulted in a model that included four DDMs, divided into two pairs, each pair racing to a 501 
threshold (Fig. 8A); the first pair reflected the value assessment process (taking place in 502 
Region X, and determining the result of deliberate decisions). The second reflected a 503 
mechanism of threshold crossing by random fluctuations (taking place in the SMA and 504 
determining the results of arbitrary decisions). Each such pair included one DDM for the 505 
congruent option and one DDM for the incongruent option. And so, in each trial, the four 506 
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DDMs were run, and the decision outcome was determined by the first DDM to reach the 507 
threshold in the noise component for arbitrary decisions and in the value component for 508 
deliberate decisions.  509 

 510 

Figure 8: Model description and model runs in the SMA and in Region X. (A) A block 511 
diagram of the model, with its noise (SMA) and value (Region X) components, each 512 
instantiated as a race to threshold between a pair of DDMs (or causes—one congruent with the 513 
ratings in the first part of the experiment, the other incongruent). (B) A few runs of the model 514 
in the deliberate condition, in Region X (green colors), depicting the DDM for the congruent 515 
option. As is apparent, the DDM stops when the value-based component reaches threshold. Red 516 
arrows point from the Region X DDM trace at threshold to the corresponding time in the trace 517 
in the SMA (black and gray colors). The SMA traces integrate without a threshold (as the 518 
decision outcome is solely determined by the value component in Region X). The thick green 519 
and black lines depict average Region X and SMA activity over 10,000 model runs, locked to 520 
stimulus onset, respectively. (Note that this panel depicts stimulus-locked activity and not 521 
response-locked activity. So, we do not expect to find an RP in either brain region.  522 

Therefore, within this framework, Cz-electrode activity (above SMA) should mainly reflect the 523 
noise-generation component—as was proposed by Schurger et al. (2012). (Note that we 524 
suggest that noise generation might be a key function of the SMA and other brain regions 525 
underneath the Cz electrode, at least during this specific task. When subjects make arbitrary 526 
decisions, these might be based on some symmetry-breaking mechanism, which is driven by 527 
random fluctuations that are here simulated as noise. Thus, we neither claim nor think that 528 
noise generation is the main purpose or function of these brain regions in general.)  529 

The critical prediction of our model for our purposes relates to what happens during deliberate 530 
decisions in the SMA (Cz electrode). For ease of explanation, and because decision difficulty 531 
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had no consistent effect on the EEG data, we focus the discussion below on easy decisions 532 
(though the same holds for hard decisions). According to our model, the race-to-threshold pair 533 
of DDMs that would determine deliberate decisions and trigger the ensuing action is the value-534 
assessment one in Region X. Hence, when the first DDM of the Region X pair would reach the 535 
threshold, the decision would be made and movement would ensue. The SMA pair, in contrast, 536 
would not integrate toward a decision (Fig. 8B). We modeled this by not including any 537 
decision threshold in the SMA in deliberate decisions (i.e., the threshold was set to infinity, 538 
letting the DDM accumulate forever). (The corresponding magnitudes of the drift-rate are 539 
detailed in the Methods.) So, what happens in the SMA (and supposedly recorded using 540 
electrode Cz) when Region X activity reaches the threshold? SMA activity will have 541 
accumulated to some random level (Fig. 8B). This entails that, when we align such SMA 542 
activity to movement onset, we will find just a simple, weak linear trend in the SMA. This 543 
trend is the one depicted in red in Fig. 9C (in red) for the deliberate easy and hard conditions 544 
(here model activity was flipped vertically—from increasing above the x axis to decreasing 545 
below it—as in Schurger et al., 2012). In arbitrary decisions, on the other hand, the SMA pair 546 
determines the outcome, and motion ensues whenever one of the DDMs crosses the threshold. 547 
Thus, when its activity is inspected with respect to movement onset, it forms the RP-like shape 548 
of Fig. 9C (in blue), in line with the model by Schurger and colleagues (2012).    549 

Akin to the Schurger model, we fit our DDMs to our average empirical reaction-times, which 550 
were 2.13, 2.52, 0.98 and 1.00 s for the different conditions (henceforth, magnitudes are given 551 
for deliberate easy, deliberate hard, arbitrary easy, and arbitrary hard, respectively, in this 552 
order), and predicted the resulting ERP patterns. The model’s corresponding mean RTs were 553 
2.04, 2.46, 0.94, and 0.96 s for these conditions (Fig. 9A, B). The model was simultaneously fit 554 
to the empirical consistency ratios (the proportions of congruent decisions), which were 0.99, 555 
0.83, 0.54 and 0.49. The model’s corresponding consistency ratios were 1.00, 0.84, 0.53 and 556 
0.53. The model then predicted the shape of the ERP in its noise component, over the SMA 557 
(assumed to be reflected by Cz-electrode activity) for each decision type: a continuing, RP-like 558 
increase in activity (with a negative sign) for arbitrary decisions, but only a very slight increase 559 
in activity for deliberate decisions (Fig. 9C, here a decrease due to the negative sign). This was 560 
in line with our empirical results (compare Fig. 3A). Note that that the Schurger model aims to 561 
account for neural activity leading up to the decision to move, but no further (Schurger et al., 562 
2012). Similarly, we expect our DDM to fit Cz neural data only up to around -0.1 s (100 ms 563 
before response onset). We also make no claims that ours is the only, or even optimal, model 564 
that explains our results. Rather, by extending the Schurger model, our goal was to show how 565 
that interpretation of the RP could also be applied to our more-complex paradigm. (We refer 566 
the reader to work by Schurger and colleagues (Schurger, 2018; Schurger et al., 2012) for 567 
further discussions about the model, its comparison to other models, and the relation to 568 
conscious-decision onset).  569 

 570 

Discussion  571 

Since the publication of Libet’s seminal work claiming that neural precursors of action, in the 572 
form of the RP, precede subjects’ reports of having consciously decided to act (Libet et al., 573 
1983), a vigorous discussion has been raging among neuroscientists, philosophers, and other 574 
scholars about the meaning of these findings for the debate on free will (recent collections 575 
include (Mele, 2015; Pockett, Banks, & Gallagher, 2009; Sinnott-Armstrong & Nadel, 2011)). 576 
Some claim that these results have removed conscious will from the causal chain leading to 577 
action (Haggard, 2005, 2008; Libet, 1985; Wegner, 2002). Others are unconvinced that these 578 
results are decisive for, or even applicable to, the free-will debate (Breitmeyer, 1985; Mele, 579 
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2009; Nahmias, Shepard, & Reuter, 2014; Roskies, 2010). At the heart of much of this debate 580 
lies the RP, thought to represent unconscious decision/planning mechanisms that initiate 581 
subjects’ decisions prior to their conscious experience of deciding (Kornhuber & Deecke, 582 
1990; Libet et al., 1983).  583 

 584 

  585 

Figure 9: Empirical and model RTs and model prediction for Cz activity. (A) The 586 
empirical distributions of subjects’ RTs across the four decision types. (B) The equivalent 587 
distributions of RTs for the model. (C) The model’s prediction for the ERP activity in its noise 588 
component (Fig. 8A) in the SMA (electrode Cz) across all four decision types. (D) The first 20 589 
model runs for the value component (Region X) in deliberate decisions (top) and for the noise-590 
generation component (SMA) in arbitrary decisions (bottom). The integration threshold, at 591 
0.15, is designated by a dashed line in all decision conditions. Here t = 0 s designates the 592 
beginning of the model’s run. 593 

Notably, the RP and similar findings showing neural activations preceding the conscious 594 
decision to act have typically been based on arbitrary decisions (Haggard & Eimer, 1999; Lau 595 
et al., 2004; Libet, 1985; Libet et al., 1983; Sirigu et al., 2004; Soon et al., 2008; Soon et al., 596 
2013). This, among other reasons, rested on the notion that for an action to be completely free, 597 
it should not be determined in any way by external factors (Libet, 1985)—which is the case for 598 
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arbitrary, but not deliberate, decisions (where each decision alternative is associated with a 599 
value, and the values of alternatives typically guide one’s decision). But this notion of freedom 600 
faces several obstacles. First, most discussions of free will focus on deliberate decisions, 601 
asking when and whether these are free (Frankfurt, 1971; Hobbes, 1994; Wolf, 1990). This 602 
might be because everyday decisions to which we associate freedom of will—like choosing a 603 
more expensive but more environmentally friendly car, helping a friend instead of studying 604 
more for a test, donating to charity, and so on—are generally deliberate, in the sense of being 605 
reasoned, purposeful, and bearing consequences (although see Deutschländer, Pauen, and 606 
Haynes (2017)). In particular, the free will debate is often considered in the context of moral 607 
responsibility (e.g., was the decision to harm another person free or not) (Fischer, 1999; 608 
Haggard, 2008; Maoz & Yaffe, 2015; Roskies, 2012; Sinnott-Armstrong, 2014; Strawson, 609 
1994), and free will is even sometimes defined as the capacity that allows one to be morally 610 
responsible (Mele, 2006, 2009). In contrast, it seems meaningless to assign blame or praise to 611 
arbitrary decisions. Thus, though the scientific operationalization of free will has typically 612 
focused on arbitrary decisions, the common interpretations of these studies—in neuroscience 613 
and across the free will debate—have often alluded to deliberate ones.  614 

Here, we show that inference from arbitrary to deliberate decisions may not be justified, as the 615 
neural precursors of arbitrary decisions, and in particular the RP, do not generalize to 616 
meaningful ones (Breitmeyer, 1985; Roskies, 2010). For arbitrary decisions, we replicated 617 
earlier results, with an RP recorded in the Cz electrode, having typical scalp topography and the 618 
expected waveform shape over time. However, the RP was substantially diminished—if not 619 
altogether absent—for deliberate decisions; it showed neither the expected slope nor the 620 
expected scalp topography. Null-hypothesis significance testing (NHST) suggested that the 621 
null hypothesis—i.e., that there is no RP—can be rejected for arbitrary decisions but cannot be 622 
rejected for deliberate ones. A cluster-based nonparametric permutation analysis—to locate 623 
temporal windows where EEG activity is reliably different from 0—found prolonged activity 624 
of this type about 1.2 s before movement onset for both types of arbitrary decisions, but no 625 
such activity for either type of deliberate decisions. A Bayesian analysis found clear evidence 626 
for an RP in arbitrary decisions and an inconclusive trend toward no RP in deliberate decisions. 627 
Changing the baseline to make it equally distant from arbitrary and deliberate decisions did 628 
suggest conclusive evidence for no RP in deliberate decisions (while still finding clear 629 
evidence for an RP in arbitrary decisions). Further, trend analysis showed that there is no trend 630 
during the RP time window for deliberate decisions (here Bayesian analysis suggested 631 
moderate to strong evidence against a trend) while there exists a reliable trend for arbitrary 632 
decisions (extremely strong evidence for an effect). Thus, taken together, there is 633 
overwhelming evidence for an RP in arbitrary decisions (in all six different analyses that we 634 
conducted—NHST and Bayesian). But, in contrast, we found no evidence for the existence of 635 
an RP in deliberate decisions (in all six analyses) and, at the same time, there was evidence 636 
against RP existence in such decisions (in five of the six analyses, with the single, remaining 637 
analysis providing only inconclusive evidence for an absence of an RP). Therefore, at the very 638 
least, our results support the claim that the previous findings regarding the RP might be 639 
confined to arbitrary decisions and do not generalize to deliberate ones. The results further 640 
suggest that different neural mechanisms might drive deliberate and arbitrary decisions. This 641 
clearly challenges the generalizability of previous studies relying on arbitrary decisions, 642 
regardless of whether they were based on the RP or not.  643 

Interestingly, while the RP was present in arbitrary decisions but absent in deliberate ones, the 644 
LRP—a long-standing, more-motor ERP component, which began much later than the RP——645 
was indistinguishable between the different decision types. This provides evidence that, at the 646 
motor level, the neural representation of the deliberate and arbitrary decisions that our subjects 647 
made may have been indistinguishable, as was our intention when designing the task. 648 
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Our finding and the model thus suggest that two different mechanisms may be involved in 649 
arbitrary and deliberate decisions. Earlier literature demonstrated that deliberate, reasoned 650 
decision-making—which was mostly studied in the field of neuroeconomics (Kable & 651 
Glimcher, 2009) or using perceptual decisions (Gold & Shadlen, 2007)—elicited activity in the 652 
prefrontal cortex (PFC; mainly the dorsolateral (DLPFC) part (Sanfey, Rilling, Aronson, 653 
Nystrom, & Cohen, 2003; Wallis & Miller, 2003) and ventromedial (VMPFC) 654 
part/orbitofrontal cortex (OFC) (Ramnani & Owen, 2004; Wallis, 2007) and the anterior 655 
cingulate cortex (ACC) (Bush, Luu, & Posner, 2000; Carter et al., 1998). Arbitrary, 656 
meaningless decisions, in contrast, were mainly probed using variants of the Libet paradigm, 657 
showing activations in the Supplementary Motor Area (SMA), alongside other frontal areas 658 
like the medial frontal cortex (Brass & Haggard, 2008; Krieghoff, Waszak, Prinz, & Brass, 659 
2011) or the frontopolar cortex, as well as the posterior cingulate cortex (Fried et al., 2011; 660 
Soon et al., 2008) (though see Hughes, Schütz-Bosbach, and Waszak (2011), which suggests 661 
that a common mechanism may underlie both decision types). Possibly then, arbitrary and 662 
deliberate decisions may differ not only with respect to the RP, but be subserved by different 663 
underlying neural circuits, which makes generalization from one class of decisions to the other 664 
more difficult. Deliberate decisions are associated with more lateralized and central neural 665 
activity while arbitrary ones are associated with more medial and frontal ones. This appears to 666 
align with the different brain regions associated with the two decision types above, as also 667 
evidenced by the differences we found between the scalp distributions of arbitrary and 668 
deliberate decisions (Fig. 3A). Further studies are needed to explore this potential divergence 669 
in the neural regions between the two decision types. 670 

To be clear, and following the above, we do not claim that the RP captures all unconscious 671 
processes that precede conscious awareness. However, some have suggested that the RP 672 
represents unconscious motor-preparatory activity before any kind of decision (e.g., Libet, 673 
1985). But our results provide evidence against that claim, as we do not find an RP before 674 
deliberate decisions, which also entail motor preparation. What is more, in deliberate decisions 675 
in particular, it is likely that there are neural precursors of upcoming actions—possibly 676 
involving the above neural circuits as well as circuits that represents values—which are 677 
unrelated to the RP. Note also that we did not attempt to separately measure the timing of 678 
subjects’ conscious decision to move. Rather, we instructed them to hold their hands above the 679 
relevant keyboard keys and press their selected key as soon as they made up their mind. This 680 
was both to keep the decisions in this task more ecological and because we think that the key 681 
method of measuring decision onset (using some type of clock to measure Libet’s W-time) is 682 
highly problematic (see Methods). Some might also claim that unconscious decision-making 683 
could explain our results, suggesting that in arbitrary decisions subjects engage in unconscious 684 
deliberation or in actively inhibiting their urge to follow their preference as well as in free 685 
choice, while in deliberate decisions only deliberation is required. But this interpretation is 686 
unlikely because the longer RTs in deliberate decisions suggest, if anything, that more complex 687 
mental processes (conscious or unconscious) took place before deliberate and not arbitrary 688 
decisions. What is more, these interpretations should impede our chances of finding the RP in 689 
arbitrary trials (as the design diverges from the original Libet task), yet the RP was present, 690 
rendering them less plausible. 691 

Aside from highlighting the neural differences between arbitrary and deliberate decisions, this 692 
study also challenges a common interpretation of the function of the RP. If the RP is not 693 
present before deliberate action, it does not seem to be a necessary link in the general causal 694 
chain leading to action. Schurger et al. (2012) suggested that the RP reflects the accumulation 695 
of stochastic fluctuations in neural activity that lead to action, following a threshold crossing, 696 
when humans arbitrarily decide to move. According to that model, the shape of the RP results 697 
from the manner in which it is computed: averaged over trials that are locked to response onset 698 
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(that directly follows the threshold crossing). Our results and our model are in line with that 699 
interpretation and expand upon it, suggesting that the RP represents the accumulation of noisy, 700 
random fluctuations that drive arbitrary decisions, while deliberate decisions are mainly driven 701 
by the values associated with the decision alternatives (Maoz et al., 2013).  702 

Our drift-diffusion model was based on the assumption that every decision can be driven by a 703 
component based on the values of the decision alternatives (i.e., subjects’ support for the two 704 
NPOs we presented) or by another component representing noise—random fluctuations in 705 
neural activity. The value component plays little to no role in arbitrary decisions, so action 706 
selection and timing depend on when the accumulation of noise crosses the decision threshold 707 
for the congruent and incongruent decision alternatives. In deliberate decisions, in contrast, the 708 
value component drives the decisions, while the noise component plays little to no role. Thus, 709 
in arbitrary decisions, action onset closely tracks threshold crossings of the noise component. 710 
But, in deliberate decisions, the noise component reaches a random level and is then stopped; 711 
so, the value component drives the decision. Hence, locking the ERP to response onset and 712 
averaging over trials to obtain the RP leads to slight slope for deliberate decisions but to the 713 
expected RP shape in arbitrary decisions. This provides strong evidence that the RP does not 714 
reflect subconscious movement preparation. Rather, it is induced by threshold crossing of 715 
random fluctuations in arbitrary decisions, which do not drive deliberate decisions; 716 
accordingly, the RP is not found there. Further studies of the causal role of consciousness in 717 
deliberate versus arbitrary decisions are required to test this claim. 718 

Nevertheless, two possible, alternative explanations of our results can be raised. First, one 719 
could claim that—in the deliberate condition only—the NPO names act as a cue, thereby 720 
turning what we term internal, deliberate decisions into no more than simple responses to 721 
external stimuli. Under this account, if the preferred NPO is on the right, it is immediately 722 
interpreted as “press right”. It would therefore follow that subjects are actually not making 723 
decisions in deliberate trials, which in turn is reflected by the absence of the RP in those trials. 724 
However, the reaction time and consistency results that we obtained provide evidence against 725 
this interpretation. We found longer reaction times for hard-deliberate decisions than for easy-726 
deliberate ones (2.52 versus 2.13 s, on average, respectively; Fig. 2 left) and higher 727 
consistencies with the initial ratings for easy-deliberate decisions than for hard-deliberate 728 
decisions (0.99 versus 0.83, on average, respectively; Fig. 2 right). If the NPO names acted as 729 
mere cues, we would have expected no differences between reaction times or consistencies for 730 
easy- and hard-deliberate decisions. In addition, there were 50 different causes in the first part 731 
of the experiment. So, it is highly unlikely that subjects could memorize all 1225 pairwise 732 
preferences among these causes and simply transform any decision between a pair of causes 733 
into a stimulus instructing to press left or right.  734 

Another alternative interpretation of our results is that subjects engage in (unconscious) 735 
deliberation also during arbitrary decisions (Tusche, Bode, & Haynes, 2010), as they are trying 736 
to find a way to break the symmetry between the two possible actions. If so, the RP in the 737 
arbitrary decisions might actually reflect the extra effort in those types of decisions, which is 738 
not found in deliberate decisions. However, this interpretation entails a longer reaction time for 739 
arbitrary than for deliberate decisions, because of the heavier cognitive load, which is the 740 
opposite of what we found (Fig. 2A). Under this interpretation, we would also expect the 741 
simpler deliberation in arbitrary-easy trials to result in a shorter reaction-time than that of 742 
arbitrary-hard. But this is not what we find (Fig. 2A). 743 

In conclusion, our study suggests that RPs do not precede deliberate decisions or is at least 744 
strongly diminished before such decisions. In addition, it suggests that RPs represent an 745 
artificial accumulation of random fluctuations rather than serving a genuine marker of an 746 
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unconscious decision to initiate voluntary movement. This further motivates future 747 
investigations into other precursors of action besides the RP using EEG, fMRI, or other 748 
techniques. It also highlights that it would be of particular interest to find the neural activity 749 
that precedes deliberate decisions. And it would also be of interest to find neural activity, 750 
which is not motor activity, that is common to both deliberate and arbitrary decisions. 751 

Materials and Methods 752 

Subjects  753 

Twenty healthy subjects participated in the study. They were California Institute of 754 
Technology (Caltech) students as well as members of the Pasadena community. All subjects 755 
had reported normal or corrected-to-normal sight and no psychiatric or neurological history. 756 
They volunteered to participate in the study for payment ($20 per hour). Subjects were 757 
prescreened to include only participants who were socially involved and active in the 758 
community (based on the strength of their support of social causes, past volunteer work, past 759 
donations to social causes, and tendency to vote). The data from 18 subjects was analyzed; two 760 
subjects were excluded from our analysis (see Sample size and exclusion criteria below). The 761 
experiment was approved by Caltech’s Institutional Review Board (14-0432; Neural markers 762 
of deliberate and random decisions), and informed consent was obtained from all participants 763 
after the experimental procedures were explained to them.  764 

Sample size and exclusion criteria  765 

We ran a power analysis based on the findings of Haggard and Eimer (1999). Their RP in a 766 
free left/right-choice task had a mean of 5.293 µV and standard deviation of 2.267 µV. Data 767 
from a pilot study we ran before this experiment suggested that we might obtain smaller RP 768 
values in our task (they referenced to the tip of the nose and we to the average of all channels, 769 
which typically results in a smaller RP). Therefore, we conservatively estimated the magnitude 770 
of our RP as half of that of Haggard & Eimer, 2.647 µV, while keeping the standard deviation 771 
the same at 2.267 µV. Our power analysis therefore suggested that we would need at least 16 772 
subjects to reliably find a difference between an RP and a null RP (0 µV) at a p-value of 0.05 773 
and power of 0.99. This number agreed with our pilot study, where we found that a sample size 774 
of at least 16 subjects resulted in a clear, averaged RP. Following the above reasoning, we 775 
decided beforehand to collect 20 subjects for this study, taking into account that some could be 776 
excluded as they would not meet the following predefined inclusion criteria: at least 30 trials 777 
per experimental condition remaining after artifact rejection; and averaged RTs (across 778 
conditions) that deviated by less than 3 standard deviations from the group mean.  779 

Subjects were informed about the overall number of subjects that would participate in the 780 
experiment when the NPO lottery was explained to them (see below). So, we had to finalize 781 
the overall number of subjects who would participate in the study—but not necessarily the 782 
overall number of subjects whose data would be part of the analysis—before the experiment 783 
began. After completing data collection, we ran only the EEG preprocessing and behavioral-784 
data analysis to test each subject against the exclusion criteria. This was done before we looked 785 
at the data with respect to our hypothesis or research question. Two subjects did not meet the 786 
inclusion criteria: the data of one subject (#18) suffered from poor signal quality, resulting in 787 
less than 30 trials remaining after artifact rejection; another subject (#12) had RTs longer than 788 
3 standard deviations from the mean. All analyses were thus run on the 18 remaining subjects.  789 

Stimuli and apparatus   790 
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Subjects sat in a dimly lit room. The stimuli were presented on a 21” Viewsonic G225f (20” 791 
viewable) CRT monitor with a 60-Hz refresh rate and a 1024×768 resolution using 792 
Psychtoolbox version 3 and Mathworks Matlab 2014b (Brainard, 1997; Pelli, 1997). They 793 
appeared with a gray background (RGB values: [128, 128,128]). The screen was located 60 cm 794 
away from subjects' eyes. Stimuli included names of 50 real, non-profit organizations (NPOs). 795 
Twenty organizations were consensual (e.g., the Cancer Research Institute, or the Hunger 796 
project), and thirty were more controversial: we chose 15 causes that were widely debated 797 
(e.g., pro/anti guns, pro/anti abortions), and selected one NPO that supported each of the two 798 
sides of the debate. This was done to achieve variability in subjects’ willingness to donate to 799 
the different NPOs. In the main part of the experiment, succinct descriptions of the causes 800 
(e.g., pro-marijuana legalization, pro-child protection; for a full list of NPOs and causes see 801 
Supplementary Table 1) were presented in black Comic Sans MS.  802 

Study Design 803 

The objective of this study was to compare ERPs elicited by arbitrary and deliberate decision-804 
making, and in particular the RP. We further manipulated decision difficulty to validate our 805 
manipulation of decisions type: we introduced hard and easy decisions which corresponded to 806 
small and large differences between subjects’ preferences for the pairs of presented NPOs, 807 
respectively. We reasoned that if the manipulation of decision type (arbitrary vs. deliberate) 808 
was effective, there would be behavioral differences between easy and hard decisions for 809 
deliberate choices but not for arbitrary choices (because differences in preferences should not 810 
influence subjects’ arbitrary decisions). Our 2 x 2 design was therefore decision type (arbitrary 811 
vs. deliberate) by decision difficulty (easy vs. hard). Each condition included 90 trials, 812 
separated into 10 blocks of 9 trials each, resulting in a total of 360 trials and 40 blocks. Blocks 813 
of different decision types were randomly intermixed. Decision difficulty was randomly 814 
counterbalanced across trials within each block.  815 

Experimental Procedure  816 

In the first part of the experiment, subjects were presented with each of the 50 NPOs and the 817 
causes with which the NPOs were associated separately (see Supplementary Table 1). They 818 
were instructed to rate how much they would like to support that NPO with a $1000 donation 819 
on a scale of 1 (“I would not like to support this NPO at all) to 7 (“I would very much like to 820 
support this NPO”). No time pressure was put on the subjects, and they were given access to 821 
the website of each NPO to give them the opportunity to learn more about the NPO and the 822 
cause it supports. 823 

After the subjects finished rating all NPOs, the main experiment began. In each block of the 824 
experiment, subjects made either deliberate or arbitrary decisions. Two succinct cause 825 
descriptions, representing two actual NPOs, were presented in each trial (Fig. 1). In deliberate 826 
blocks, subjects were instructed to choose the NPO to which they would like to donate $1000 827 
by pressing the <Q> or <P> key on the keyboard, using their left and right index finger, for the 828 
NPO on the left or right, respectively, as soon as they decided. Subjects were informed that at 829 
the end of each block one of the NPOs they chose would be randomly selected to advance to a 830 
lottery. Then, at the end of the experiment, the lottery will take place and the winning NPO 831 
will receive a $20 donation. In addition, that NPO will advance to the final, inter-subject 832 
lottery, where one subject’s NPO will be picked randomly for a $1000 donation. It was 833 
stressed that the donations were real and that no deception was used in the experiment. To 834 
persuade the subjects that the donations were real, we presented a signed commitment to 835 
donate the money, and promised to send them the donation receipts after the experiment. Thus, 836 
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subjects knew that in deliberate trials, every choice they made was not hypothetical, and could 837 
potentially lead to an actual $1020 donation to their chosen NPO.  838 

Arbitrary trials were identical to deliberate trials except for the following crucial differences. 839 
Subjects were told that, at the end of each block, the pair of NPOs in one randomly selected 840 
trial would advance to the lottery together. And, if that pair wins the lottery, both NPOs would 841 
receive $10 (each). Further, the NPO pair that would win the inter-subject lottery would 842 
receive a $500 donation each. Hence it was stressed to the subjects that there was no reason for 843 
them to prefer one NPO over the other in arbitrary blocks, as both NPOs would receive the 844 
same donation regardless of their button press. Subjects were told to therefore simply press 845 
either <Q> or <P> as soon as they decided to do so.  846 

Thus, while subjects’ decisions in the deliberate blocks were meaningful and consequential, 847 
their decisions in the arbitrary blocks had no impact on the final donations that were made. In 848 
these trials, subjects were further urged not to let their preferred NPO dictate their response. 849 
Importantly, despite the difference in decision type between deliberate and arbitrary blocks, the 850 
instructions for carrying out the decisions were identical: Subjects were instructed to report 851 
their decisions as soon as they made them in both conditions. They were further asked to place 852 
their right and left index fingers on the response keys, so they could respond as quickly as 853 
possible. Note that we did not ask subjects to report their “W-time” (time of consciously 854 
reaching a decision), because this measure was shown to rely on neural processes occurring 855 
after response onset (Lau, Rogers, & Passingham, 2007) and to potentially be backward 856 
inferred from movement time (Banks & Isham, 2009). Even more importantly, clock 857 
monitoring was demonstrated to have an effect on RP size (Miller et al., 2011), so it could 858 
potentially confound our results (Maoz et al., 2015). 859 

Decision difficulty (Easy/Hard) was manipulated throughout the experiment, randomly 860 
intermixed within each block. Decision difficulty was determined based on the rating 861 
difference between the two presented NPOs. NPO pairs with 1 or at least 4 rating-point 862 
difference were designated hard or easy, respectively. Based on each subject’s ratings, we 863 
created a list of NPO pairs, half of each were easy choices and the other half hard choices.  864 

Each block started with an instruction written either in dark orange (Deliberate: “In this block 865 
choose the cause to which you want to donate $1000”) or in blue (Arbitrary: “In this block 866 
both causes may each get a $500 donation regardless of the choice”) on a gray background that 867 
was used throughout the experiment. Short-hand instructions appeared at the top of the screen 868 
throughout the block in the same colors as that block’s initial instructions; Deliberate: “Choose 869 
for $1000” or Arbitrary: “Press for $500 each” (Fig. 1).  870 

Each trial started with the gray screen that was blank except for a centered, black fixation 871 
cross. The fixation screen was on for a duration drawn from a uniform distribution between 1 872 
and 1.5 s. Then, the two cause-descriptions appeared on the left and right side of the fixation 873 
cross (left/right assignments were randomly counterbalanced) and remained on the screen until 874 
the subjects reported their decisions with a key press—<Q> or <P> on the keyboard for the 875 
cause on the left or right, respectively. The cause corresponding to the pressed button then 876 
turned white for 1 s, and a new trial started immediately. If subjects did not respond within 20 877 
s, they received an error message and were informed that, if this trial would be selected for the 878 
lottery, no NPO would receive a donation. However, this did not happen for any subject on any 879 
trial.  880 

To assess the consistency of subjects’ decisions during the main experiment with their ratings 881 
in the first part of the experiment, subjects’ choices were coded in the following way: each 882 
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binary choice in the main experiment was given a consistency grade of 1, if subjects chose the 883 
NPO that was rated higher in the rating session, and 0 if not. Then an averaged consistency 884 
grade for each subject was calculated as the mean consistency grade over all the choices. Thus, 885 
a consistency grade of 1 indicates perfect consistency with one’s ratings across all trials, 0 is 886 
perfect inconsistency, and 0.5 is chance performance. 887 

We wanted to make sure subjects were carefully reading and remembering the causes also 888 
during the arbitrary trials to better equate memory load, attention, and other cognitive aspects 889 
between deliberate and arbitrary decisions—except those aspects directly associated with the 890 
decision type, which was the focus of our investigation. We therefore randomly interspersed 36 891 
memory catch-trials throughout the experiment (thus more than one catch trial could occur per 892 
block). On such trials, four succinct descriptions of causes were presented, and subjects had to 893 
select the one that appeared in the previous trial. A correct or incorrect response added or 894 
subtracted 50 cents from their total, respectively. (Subjects were informed that if they reached 895 
a negative balance, no money will be deducted off their payment for participation in the 896 
experiment.) Thus, subjects could earn $18 more for the experiment, if they answered all 897 
memory test questions correctly. Subjects typically did well on these memory questions, on 898 
average erring in 2.5 out of 36 memory catch trials (7% error) and gaining additional $16.75 899 
(SD=3.19). Subjects’ error rates in the memory task did not differ significantly between the 900 
experimental conditions (2-way ANOVA; decision type: F(1,17)=2.51, p=0.13; decision 901 
difficulty: F(1,17)=2.62, p=0.12; interaction: F(1,17)=0.84, p=0.37). 902 

ERP recording methods   903 

The EEG was recorded using an Active 2 system (BioSemi, the Netherlands) from 64 904 
electrodes distributed based on the extended 10–20 system and connected to a cap, and seven 905 
external electrodes. Four of the external electrodes recorded the EOG: two located at the outer 906 
canthi of the right and left eyes and two above and below the center of the right eye. Two 907 
external electrodes were located on the mastoids, and one electrode was placed on the tip of the 908 
nose. All electrodes were referenced during recording to a common-mode signal (CMS) 909 
electrode between POz and PO3. The EEG was continuously sampled at 512 Hz and stored for 910 
offline analysis.  911 

ERP analysis  912 

ERP analysis was conducted using the “Brain Vision Analyzer” software (Brain Products, 913 
Germany) and in-house Mathworks Matlab scripts. Data from all channels were referenced 914 
offline to the average of all channels, which is known to result in a reduced-amplitude RP 915 
(because the RP is such a spatially diffuse signal). The data were then digitally high-pass 916 
filtered at 0.1 Hz using a Finite Impulse Response (FIR) filter to remove slow drifts. A notch 917 
filter at 59-61 Hz was applied to the data to remove 60-Hz electrical noise. The signal was then 918 
cleaned of blink and saccade artifacts using Independent Component Analysis (ICA) 919 
(Junghofer, Elbert, Tucker, & Rockstroh, 2000). Signal artifacts were detected as amplitudes 920 
exceeding ±100 µV, differences beyond 100 µV within a 200 ms interval, or activity below 921 
0.5 µV for over 100 ms (the last condition was never found). Sections of EEG data that 922 
included such artifacts in any channel were removed (150 ms before and after the artifact). We 923 
further excluded single trials in which subjects pressed the wrong button as well as trials where 924 
subjects’ RTs were less than 200 ms, more than 10s, or more than 3 standard deviations away 925 
from that subject’s mean in that condition (mean number of excluded trials =7.17, SD=2.46, 926 
which are 1.99% of the trials). Overall, the average number of included trials in each 927 
experimental cell was 70.38 trials with a range of 36-86 out of 90 trials per condition. Channels 928 
that consistently had artifacts were replaced using interpolation (4.2 channels per subject, on 929 

All rights reserved. No reuse allowed without permission. 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/097626doi: bioRxiv preprint first posted online Jan. 1, 2017; 

http://dx.doi.org/10.1101/097626


Page 26 of 36 
 

average). No significant differences were found in the number of excluded trials across 930 
conditions (2-way ANOVA; decision type: F(1,17)=3.31, p=0.09; decision difficulty: 931 
F(1,17)=1.83, p=0.19; interaction: F(1,17)=0.42, p=0.53).  932 

The EEG was segmented by locking the waveforms to subjects’ movement onset, starting 2s 933 
prior to the movement and ending 0.2s afterwards, with the segments averaged separately for 934 
each decision type (Deliberate/Arbitrary x Easy/Hard) and decision content (right/left). The 935 
baseline period was defined as the time window between -1000 ms and -500 ms prior to 936 
stimulus onset, that is, the onset of the causes screen, rather than prior to movement onset. In 937 
addition to the main baseline, we tested another baseline—from -1000 ms to -500 ms relative 938 
to movement onset—to investigate whether the baseline period influenced our main results (see 939 
Results). Furthermore, we segmented the EEG based on stimulus onset, using the same 940 
baseline, for stimulus-locked analysis (again, see Results). 941 

To assess potential effects of eye movements during the experiment, we defined the radial eye 942 
signal as the average over all 4 EOG channels, when band-pass filtered to between 30 and 100 943 
Hz. We then defined a saccade as any signal that was more than 2.5 standardized IQRs away 944 
from the median of the radial signal for more than 2 ms. Two consecutive saccades had to be at 945 
least 50 ms apart. The saccade count (SC) was the number of saccades during the last 500 ms 946 
before response onset (Keren, Yuval-Greenberg, & Deouell, 2010) (see also (Croft & Barry, 947 
2000; Elbert, Lutzenberger, Rockstroh, & Birbaumer, 1985; Shan, Moster, & Roemer, 1995)). 948 

Statistical Analysis 949 

EEG differences greater than expected by chance were assessed using two-way ANOVAs with 950 
decision type (deliberate, arbitrary) and decision difficulty (easy, hard), using IBM SPSS 951 
statistics, version 24. For both RP and LRP signals, the mean amplitude from 500 ms before to 952 
button-press onset were used for the ANOVAs. Greenhouse–Geisser correction was never 953 
required as sphericity was never violated (Picton et al., 2000). 954 

Trend analysis on all subjects’ data was carried out by regressing the voltage for every subject 955 
against time for the last 1000 ms before response onset using first-order polynomial linear 956 
regression (see Results). We used every 10th time sample for the regression (i.e., the 1st, 11th, 957 
21st, 31st samples, and so on) to conform with the individual-subject analysis (see below). For 958 
the individual-subject analysis, the voltage on all trials was regressed against time in the same 959 
manner (i.e., for the last 1000 ms before response onset and using first-order polynomial linear 960 
regression). As individual-trial data is much noisier than the mean over all trials in each 961 
subject, we opted for standard robust-regression using iteratively reweighted least squares 962 
(implemented using the robustfit() function in Mathworks Matlab). The iterative robust-963 
regression procedure is time consuming. So, we used every 10th time sample instead of every 964 
sample to make the procedure’s run time manageable. Also, as EEG signals have a 1/f power 965 
spectrum, taking every 10th sample further better conforms with the assumption of i.i.d. noise 966 
in linear regression. 967 

We further conducted Bayesian analyses of our main results. This allowed us to assess the 968 
strength of the evidence for or against the existence of an effect, and specifically test whether 969 
null results stem from genuine absence of an effect or from insufficient or underpowered data. 970 
Specifically, the Bayes factor allowed us to compare the probability of observing the data 971 
given H0 (i.e., no RP in deliberate decisions) against the probability of observing the data given 972 
H1 (i.e., RP exists in deliberate decisions). We followed the convention that a BF < 0.33 973 
implies substantial evidence for lack of an effect (that is, the data is at least three times more 974 
likely to be observed given H0 than given H1), 0.33 < BF < 3 suggests insensitivity of the data, 975 
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and BF > 3 denotes substantial evidence for the presence of an effect (H1) (Jeffreys, 1998). 976 
Bayesian analysis was carried out using JASP (ver. 0.8; default settings). 977 

In addition to the above, we used the cluster-based nonparametric method developed by Maris 978 
and Oostenveld to find continuous temporal windows where EEG activity was reliably 979 
different from 0 (Maris & Oostenveld, 2007). We used an in-house implementation of the 980 
method in Mathworks Matlab with a threshold of 2 on the t statistic and with a significance 981 
level of p = 0.05. 982 

Model and Simulations  983 

All simulations were performed using Mathworks Matlab 2018b. The model was devised off 984 
the one proposed by Schurger et al. (2012). Like them, we built a drift-diffusion model 985 
(Ratcliff, 1978; Usher & McClelland, 2001), which included a leaky stochastic accumulator 986 
(with a threshold on its output) and a time-locking/epoching procedure. The original model 987 
amounted to iterative numerical integration of the differential equation 988 

  (1) 

where I is the drift rate, k is the leak (exponential decay in x), ξ is Gaussian noise, and c is a 989 
noise-scaling factor (we used c = 0.05). Δt is the discrete time step used in the simulation (we 990 
used Δt = 0.001, similar to our EEG sampling rate). The model integrates xi until it crosses a 991 
threshold, which represents a decision having been made.  992 

In such drift-diffusion models, for a given k and c, the values of I and the threshold together 993 
determine how quickly a decision will be reached, on average. If we further fix the threshold, a 994 
higher drift rate, I, represents a faster decision, on average. The drift rate alone can thus be 995 
viewed as a constant “urgency to respond” (using the original Schurger term) that is inherent in 996 
the demand characteristics of the task, evidenced by the fact that no subject took more than 20 997 
s to make a decision on any trial. The leak term, k, ensures that the model would not be too 998 
linear; i.e., it prevented the drift rate from setting up a linear trajectory for the accumulator 999 
toward the threshold. Also, k has a negative sign and is multiplied by xi. So, kxi acts against the 1000 
drift induced by I and gets stronger as xi grows. Hence, due to the leak term, doubling the 1001 
height of the threshold could make the accumulator rarely reach the threshold instead of 1002 
reaching it in roughly twice the amount of time (up to the noise term).  1003 

When comparing the model’s activity on the SMA and on Region X, we needed to know how 1004 
to set the drift rate for the DDM in the Region X for deliberate decisions. We made the 1005 
assumption that the ratio between the drift rate in Region X and in the SMA during deliberate 1006 
decisions would be the same as the ratio between the average actual activity in the SMA and in 1007 
the rest of the brain during arbitrary decisions. Our EEG data suggested that this ratio 1008 
(calculated as activity in Cz divided by the mean activity in the rest of the electrodes is 1.45. 1009 
Hence, we set the drift rate in Region X to be 1.45 times smaller than that of the SMA (see 1010 
Table 1 for the drift values in the SMA). 1011 

Our model differed from Schurger’s in two main ways. First, it accounted for both arbitrary 1012 
and deliberate decisions and was thus built to fit our empirical results. We devised a model that 1013 
was composed of two distinct components (Fig. 8A), each described by a race to threshold 1014 
between 2 DDMs based on Eq. (1) (see below), but with different parameter values for each 1015 
DDM (Table 1). The first component accumulated activity that drove arbitrary decisions (i.e., 1016 

menter sat outside of the shielded room and communicated with the subject
via an intercom.

Each session began with a 5-min resting-state recording (part of a separate
experiment). After this recording the subject performed 50 trials of the
classic Libet task and then 150 trials of the interruptus task (three rounds of
50 trials each), in that order. Instructions for the interruptus task were
explained to the subject only after the classic Libet task had been completed.
The only difference between the two tasks was the possibility of inter-
ruptions in the latter task (a nonaversive auditory “pip” played through an
EEG-compatible earphone). In all other respects the trial sequence was the
same for the two tasks.

Classic Libet Task. Each trial beganwith the appearance of thefixation cross at
the center of the screen. The experimenter would press a key on the stimulus
computer keyboard, causing the clock face to appear. The subject would then
initiate the trial by pressing the button, at which point the dot would appear
and begin (starting at the top of the clock) to circle the clock face. Subjects
were instructed to wait for one full cycle on the clock and then, at any time
after that, to press the button. Subjects were instructed to maintain the
thumb relaxed and in contact with the button throughout the entire trial (i.e.,
to not lift the thumb just before pressing the button) and to make one single
abrupt flexion of the thumb at an unspecified time. Subjects were told to try
not to decide or plan in advance when to press the button, but to make the
event as spontaneous and capricious as possible. Subjects were reminded
that, after the first cycle of the dot around the clock face, the movement
could be made at any time. Despite this, no subject ever waited longer than
30 s to produce a movement.

After the subject pressed the button, the dot would continue to circle the
clock for 1 s and then the screen would go blank. The subject would then
indicate, verbally, the approximate position of the dot at the time that she or
he was first aware of the urge to press the button (subjects were reminded
that this is not the same as indicating the time of the movement itself, and
we made sure that they understood the difference). [Libet’s method for
measuring the onset of felt urges has been criticized (61), but is irrelevant to
this experiment, which concerns only the initiation of movement. We nev-
ertheless report these data, for completeness.] The experimenter would
then verbally repeat the number back to the subject for verification and
note the time alongside the trial number in a log book (these were later
entered manually onto a computer spreadsheet, alongside the trial in-
formation exported from E-Prime). The experimenter would then press a key
to initiate the next trial.

Libetus Interruptus Task. The instructions for the interruptus task were given
only after the subject completed the classic task. Subjects were told that they
were to repeat the same task as before and were given the following ad-
ditional instructions (in French): “At any time during a trial you might hear
a brief click. If you hear the click, then you should press the button imme-
diately, as quickly as possible. The trial ends when you either make a spon-
taneous movement or are interrupted by a click, whichever happens first.”
Subjects were reminded to make the movement as spontaneous as possible
and were also reminded that the task is not a race to press the button before
the click—the experimenter has no preference for “click trials” or “sponta-
neous-movement trials” (cf. ref. 7).

For the interruptus task, random interruptions were scheduled (by the
computer software) forevery trial. In sometrials the subjectmadea self-initiated
movement before the scheduled interruption, and in some trials the subject
was interrupted before making a self-initiated movement. The time of inter-
ruptions was selected randomly from a uniform distribution with the range
being selected to encompass the subject’s waiting-time distribution from the
preceding session. The lowendof the rangewas never earlier than100ms (“10”
on the clock) after the first clock cycle, to avoid extremely early interruptions.
The precise range over which interruption times were randomly selected was
recorded for each round for each subject, and these ranges were used for the
fitting of each subject’s waiting-time distribution and to derive the predicted
waiting-time distribution for the interruptus task (Fig. 3B). The use of a Poisson
distribution would have ensured that subjects could not use elapsed time to
predict the probability of an interruption. However, this method would also
have resulted in a preponderance of early interruptions and may have been
more likely to incite subjects to rush their responses to beat the clock. Also
this method would have resulted in the time of interruptions being biased to-
ward the early part of the trial. Thus, we opted for a uniform distribution.

EEG Recording. EEG signals were recorded inside a shielded chamber at
a sampling rate of 1,000 Hz (Elekta NeuroMag EEG/MEG system), while the
subject performed the tasks. The subject wore a 60-channel EEG cap (Elekta

NeuroMag ) and sat in a reclined position. To shorten the EEG preparation
time, we used a subset of the 60 electrodes, encompassing the standard 10–20
montage, with the addition of C1, C2, FC1, and FC2. We endeavored to keep
impedances below 10 kOhm, while being mindful of any reported discom-
fort during the preparation. Electrooculograms (EOG) (horizontal and ver-
tical) and electromyograms (EMG) (flexor pollicis longus muscle) were also
recorded, using pairs of electrodes connected to bipolar recording channels.
Time locking to the rectified, high-pass–filtered EMG signal did not notice-
ably change the results, but only shifted them ∼50 ms forward in time. Be-
cause EMG data were unavailable for three subjects (due to excess hair on
the arm or an electrode coming loose) and were unreliable for a fourth, we
chose to time lock to the button press.

EEG Data Analysis. Data analysis was performed using MatLab (MathWorks)
with the help of the FieldTrip toolbox for MatLab (http://fieldtrip.fcdonders.
nl/). A dedicated trigger channel was used to insert temporal markers in the
data, corresponding to trial onset, button press, and auditory interruptions.
Data epochs were time locked to the first button press after trial onset
(whether spontaneous or in response to an interruption) and epochs cov-
ered the time window from −3.5 s to +1.0 s relative to that event. For time
locking to interruptions, the trigger pulse corresponding to the auditory pip
was located within the epoch, and the whole epoch was realigned to this
sample. Independent component analysis (ICA) was used to remove ocular
artifacts from the data (62). Ocular ICA components were identified by visual
inspection and comparison with the EOG signals. Trials with artifacts
remaining after this procedure were excluded by visual inspection. Because
we were interested in slow fluctuations, no detrending, baseline correction,
or hi-pass filtering was performed. Data were downsampled to 250 Hz
during preprocessing, before data analysis.

Due to anatomical differences between subjects, variation in the posi-
tioning of the electrode cap, and the fact that our EEG caps came in three
discrete sizes, it is unlikely that any given electrode will be optimally placed to
record the RP in all subjects. Most subjects exhibited an RP at electrode Cz and
one or more adjacent electrodes, especially contralateral to the dominant
hand (used to perform the task), but the center of the spatial distribution
varied from subject to subject. Therefore, for each subject we selected an
electrode fromCz, C1, or FC1 (Cz, C2, or FC2 if left handed) on the basis of data
from the classic task, showing the highest-amplitude RP. This same electrode
was then used for analysis of the data from the interruptus task (so the choice
of electrode used in Fig. 3 was independent of the data presented in Fig. 3).
Limiting the choice to C1 (C2) or FC1 (FC2) did not change the outcome.

Model and Simulations. All simulations were performed using MatLab
(MathWorks). The model includes two components: a leaky stochastic accu-
mulator (with a threshold on its output) and a time-locking/epoching pro-
cedure. We used a well-known accumulator model (DDM) (27), which is an
extension of an earlier model developed by Ratcliff (23). Simulation of the
model amounts to iterative numerical integration of the differential equation

δxi ¼ ðI−kxiÞΔt þ cξi
ffiffiffiffiffiffi
Δt

p
; [1]

where I is drift rate, k is leak (exponential decay in x), ξ is Gaussian noise, and
c is a noise-scaling factor (we used c = 0.1). Δt is the discrete time step used in
the simulation (we used Δt = 0.001). In the context of our model, I corre-
sponds to a general (and we assume constant) urgency to respond that is
inherent in the demand characteristics of the task. A small amount of ur-
gency is necessary in the model to account for the fact that subjects rarely if
ever wait longer than ∼20 s to produce a movement in any given trial. Be-
cause of the leak term, the urgency does not set up a linear trajectory to-
ward the threshold (i.e., if we were to increase the threshold that we used by
a factor of 2, the output of the accumulator would essentially never reach
it), but simply moves the baseline level of activity closer to the threshold so
that a crossing is very likely to happen soon (Fig. 1, Inset).

Thus, the model has three free parameters, urgency (I), leak (k), and
threshold (β). The threshold was expressed as a percentile of the output
amplitude over a set of 1,000 simulated trials (50,000 time steps each). These
three parameters were chosen on the basis of the best fit of the first
crossing-time distribution to the empirical waiting-time distribution from the
classic Libet task (we use the term “waiting time” instead of “reaction time”).
The parameters were then fixed at these values for all other simulations and
analyses, including the fitting of the RP. The three parameter values assigned
were k = 0.5, I = 0.11, and β = 0.298 (corresponding to the 80th percentile).
We modeled the classic task by simply identifying the time point of the first
threshold crossing in each simulated trial and then extracting the time series
(the output of the accumulator) from 5,000 time steps before the threshold
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random fluctuations (Schurger et al., 2012)). Such model activation reflects the neural activity 1017 
that might be recorded over the Cz electrode. We term this component of the model the Noise 1018 
component. The second component of the model reflects brain activity that drives deliberate 1019 
decisions, based on the values that subjects associated with the decision alternatives. We term 1020 
this second component the Value component. Our model relied on its noise component to 1021 
reflect arbitrary decisions and on its value component to reflect deliberate decisions. 1022 

Table 1: Values of the model’s drift-rate parameter across decision types in the 1023 
SMA. Values of the drift-rate parameter, I, in our model across (deliberate, arbitrary) x 1024 
(easy, hard) decisions x (congruent, incongruent) decision alternatives. Values in 1025 
Region X are 1.45 times smaller than in this table for each entry. 1026 

Drift rate (I) 
values 

Congruent Incongruent 
Easy Hard Easy Hard 

Deliberate 0.0400 0.0396 0.0000 0.0228 
Arbitrary 0.1648 0.1650 0.1566 0.1650 

A second difference between our model and Schurger and colleagues’ is that theirs modeled 1027 
only the decision when to move (during arbitrary decisions). As those were the only decisions 1028 
that their subjects faced. But our subjects decided both when and which hand to move. So, we 1029 
had to extend the Schurger model in that respect as well. We did this using a race-to-threshold 1030 
mechanism between the two decision alternatives. In our empirical paradigm, the difference in 1031 
rating of the two causes was either 1 (for hard decisions) or 4-6 (for easy decisions; see 1032 
“Experimental Procedure” in Methods), so there was always an alternative that was ranked 1033 
higher than the other. Choosing the higher- or lower-ranked alternative was termed a congruent 1034 
or incongruent choice with respect to the initial ratings, respectively. Hence, we modeled each 1035 
decision the subjects made as a race to threshold between the congruent and incongruent 1036 
alternatives in the noise component (for arbitrary decisions) or value component (for deliberate 1037 
ones).  1038 

Using a parameter sweep, we found the values of the thresholds, drift rate, and leak that best fit 1039 
our average empirical reaction times for (easy, hard) x (deliberate, arbitrary) decisions as well 1040 
as our empirical consistency ratios for those 4 decision types. The model’s reaction time was 1041 
defined as the overall time that it took until the first threshold crossing in the race-to-threshold 1042 
pair (again, each step took Δt = 0.001 s). We used the same threshold value of 0.15 and leak 1043 
value of k=0.5 for all model types. The only parameter that was modulated across (deliberate, 1044 
arbitrary) x (easy, hard) decisions x (congruent, incongruent) decision alternatives was the drift 1045 
rate, I (Table 1). All of these parameters were then fixed when we used the model to derive the 1046 
simulated Cz activity across all conditions. 1047 

Each simulation consisted of either 120 runs of the model, equal to the number of empirical 1048 
trials per condition, or 10000 runs of the model for a smoother reaction-time distribution for 1049 
the model (see Results). For each run of the model, we identified the first threshold crossing 1050 
point and extracted the last second (1000 steps) before the crossing in each run. If the first 1051 
crossing was earlier than sample no. 1,000 by n > 0 samples, we padded the beginning of the 1052 
epoch with n null values (NaN or “not-a-number” in Matlab). These values did not contribute 1053 
to the average across simulated trials, so the simulated average RP became noisier at earlier 1054 
time points in the epoch. Hence, our model was similarly limited to the Schurger model in its 1055 
inability to account for activity earlier than the beginning of the trial (see Results). 1056 
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Supplementary Table 1: NPO names and causes acronyms 1266 

NPO Cause  NPO website 
Consensual NPOs  
American Society on 
Aging 

Pro Quality of 
Life for the 
Elderly 

http://asaging.org/ 

Conservation Fund Pro Environment 
protection 

http://www.conservationfund.org/ 

Bill & Melinda 
Gates Foundation 

Pro Education http://www.gatesfoundation.org/ 

Global Fund for 
Women 

Pro Women's 
Rights 

https://www.globalfundforwomen.org/ 

The Hunger Project Pro Hunger 
Relief 

https://www.thp.org/ 

Oxfam International Pro Poverty & 
Disaster Relief 

http://www.oxfam.org/ 

World Wild Life 
Fund (WWF) 

Pro Species 
Conservation 

http://worldwildlife.org/ 

Cancer Research 
Institute 

Pro Cancer 
Research 

http://www.cancerresearch.org/ 

Habitat for Humanity Pro Housing for 
All 

http://www.habitat.org/ 

Reading is 
Fundamental 

Pro Advancement 
of Literacy 

http://www.rif.org/ 

International 
Institute for 
Conservation of 
Historic and Artistic 
Works 

Pro Culture & 
Arts Preservation 

https://www.iiconservation.org/ 

Big Brothers and Big 
Sisters of America 

Pro Youth 
Development 

http://www.bbbs.org/site/c.9iILI3NGKhK6F/ 

b.5962335/k.BE16/Home.htm 
United Nations 
Children's Fund 
(UNICEF) 

Pro Child 
Protection 

http://www.unicef.org/ 

Doctors without 
Borders (Medecins 
sans frontieres) 

Pro Disaster 
Medical Care 

http://www.msf.org/ 

Soldiers' Angels Pro Veterans & 
Military 

http://www.soldiersangels.org/heroes/index.php 

Disability Rights 
International 

Pro Disabilities 
Rights 

http://www.disabilityrightsintl.org/ 
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National Crime 
Prevention Council 
(NCPC) 

Pro Crime 
Prevention  

http://www.ncpc.org/ 

Amnesty 
International    

Pro Human 
Rights 

https://www.amnesty.org/ 

Peace Corps Pro Peace & 
Development 

http://www.peacecorps.gov/ 

World Health 
Organization 

Pro World Health  http://www.who.int/en/ 

Controversial NPOs 
Planned Parenthood Pro Abortion & 

Family Planning 
http://www.plannedparenthood.org/ 

Pro-Life Alliance Anti Abortion & 
Family Planning 

http://www.prolifealliance.com/ 

Human Rights 
Campaign 

Pro LBGTQ 
Rights 

http://www.hrc.org/ 

National 
Organization for 
Marriage 

Anti LBGTQ 
Rights 

https://www.nationformarriage.org/ 

Stem for Life 
Foundation 

Pro Stem Cell 
Research 

http://www.stemforlife.org/ 

Christian Dental & 
Medical Association 

Anti Stem Cell 
Research 

http://www.cmda.org/ 

Greenpeace Pro Action 
Against Climate 
Change 

http://www.greenpeace.org/international/en/ 

Global Climate Scam Anti Action 
Against Climate 
Change 

http://www.globalclimatescam.com/ 

National Association 
for Gun Rights 

Pro Gun Rights http://www.nationalgunrights.org/ 

Coalition to Stop 
Gun Violence 

Pro Gun Control http://csgv.org/ 

American Gas 
Association 

Pro Fracking for 
Natural Gas 

http://www.aga.org/Pages/default.aspx 

Americans Against 
Fracking 

Anti Fracking for 
Natural Gas 

http://www.americansagainstfracking.org/ 

StandWithUs (Israel) Pro Israel http://www.standwithus.com/ 
Palestinian Centre 
for Human Rights 

Pro Palestine http://www.pchrgaza.org/portal/en/ 

National 
Organization for the 
Reform of Marijuana 
Laws 

Pro Marijuana 
Legalization 

http://norml.org/ 

 

Citizens Against 
Legalizing 
Marijuana 

Anti Marijuana 
Legalization 

http://www.calmca.org/ 

 
Understanding 
Animal Research 

Pro Scientific 
Experiments on 
Animals 

http://www.understandinganimalresearch.org.uk/ 
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International 
Association Against 
Painful Experiments 
on Animals 

Anti Scientific 
Experiments on 
Animals 

http://www.iaapea.com/ 

 

Federation for 
American 
Immigration Reform 

Pro Immigration 
Reform 

http://www.fairus.org/ 

 
American 
Immigration Control 

Anti Immigration 
Reform 

http://www.immigrationcontrol.com/ 

 
Human Cloning 
Foundation 

Pro Human 
Cloning 

http://www.humancloning.org/ 

 
Americans to Ban 
Cloning 

Anti Human 
Cloning 

http://www.cloninginformation.org/ 

 
Americans United 
for Separation of 
Church and State 

Pro Separation of 
Church & State 

https://www.au.org/ 

 
Christian Coalition 
of America 

Anti Separation 
of Church & 
State 

http://www.cc.org/ 

Death with Dignity 
National Center 

Pro Euthanasia 
(Assisted 
Suicide) 

http://www.deathwithdignity.org/ 

 
Euthanasia 
Prevention Coalition 

Anti Euthanasia 
(Assisted 
Suicide) 

http://www.epcc.ca/ 

The Alliance for 
Better Foods 

Pro Genetically 
Modified Foods 

http://www.betterfoods.org/ 

Non-GMO Project Anti Genetically 
Modified Foods 

http://www.nongmoproject.org/ 

Answers in Genesis Pro Creationism 
Teaching 

https://answersingenesis.org 

National Center for 
Science Education 

Pro Evolution 
Teaching 

http://ncse.com/ 
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